Drazil is playing a math game with Varda.
Let's define for positive integer x as a product of factorials of its digits. For example,
.
First, they choose a decimal number a consisting of n digits that contains at least one digit larger than 1. This number may possibly start with leading zeroes. Then they should find maximum positive number x satisfying following two conditions:
1. x doesn't contain neither digit 0 nor digit 1.
2. =
.
Help friends find such number.
The first line contains an integer n (1 ≤ n ≤ 15) — the number of digits in a.
The second line contains n digits of a. There is at least one digit in a that is larger than 1. Number a may possibly contain leading zeroes.
Output a maximum possible integer satisfying the conditions above. There should be no zeroes and ones in this number decimal representation.
4
1234
33222
3
555
555
In the first case,
大意:让你算出阶乘相同的序列最大的数是多少,即能分成的最多的数,再把他们从大到小排列,把1到9所有数能分的都写出来然后用一个数组b记录。
思路比较简单

#include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; int main() { int n; char a[20]; int b[100]; scanf("%d",&n); getchar(); scanf("%s",a); int count = 0; for(int i = 0; i < n ; i++){ switch(a[i]){ case'2':b[count++] = 2;break; case'3':b[count++] = 3;break; case'4':b[count++] = 3;b[count++]=2;b[count++]=2;break; case'5':b[count++] = 5;break; case'6':b[count++] = 5;b[count++]=3;break; case'7':b[count++] = 7;break; case'8':b[count++] = 7;b[count++]=2;b[count++]=2;b[count++]=2;break; case'9':b[count++] = 7;b[count++]=3;b[count++]=3;b[count++]=2;break; } } count--; sort(b,b+count+1); for(int i = count;i >= 0;i--) printf("%d",b[i]); return 0; }