zoukankan      html  css  js  c++  java
  • POJ1836——DP(LCS+LDS)——Alignment

    Description

    In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned; it is true that the soldiers are aligned in order by their code number: 1 , 2 , 3 , . . . , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their places, but getting closer, to form a new line, where each soldier can see by looking lengthwise the line at least one of the line's extremity (left or right). A soldier see an extremity if there isn't any soldiers with a higher or equal height than his height between him and that extremity. 

    Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line. 

    Input

    On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from this line represents the height of the soldier who has the code k (1 <= k <= n). 

    There are some restrictions: 
    • 2 <= n <= 1000 
    • the height are floating numbers from the interval [0.5, 2.5] 

    Output

    The only line of output will contain the number of the soldiers who have to get out of the line.

    Sample Input

    8
    1.86 1.86 1.30621 2 1.4 1 1.97 2.2
    

    Sample Output

    4

    Source

    大意:找到最长的LCS+LDS,用N减去就是答案,有了二分模板就是好用,不过要考虑全是LCS全是LDS的时候,害我WA了一次,只要移动分界点就行
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int MAX = 1100;
    double a[MAX];
    double b[MAX],c[MAX];
    double k1[MAX],k2[MAX];
    int main()
    {
        int n, l, r, mid;
        scanf("%d",&n);
        for(int i = 1; i <= n;i++)
            scanf("%lf",&a[i]);
        int t1 ,t2 ;
        int max1 = 0;
        int p;
        for( p = 0; p <= n;p++){
                memset(b,0,sizeof(b));
                memset(c,0,sizeof(c));
                t1 = t2 = 1;
            if( p == 0){
                    for(int j = 1; j <= n;j++)
                     c[t2++] = a[j];
            }
            else if(p == n){
                    for(int j = 1; j <= n ;j++)
                    b[t1++] = a[j];
            }
            else {
              for(int j = 1; j <= p ;j++)
                b[t1++] = a[j];
              for(int j = p + 1 ; j <= n ;j++)
                c[t2++] = a[j];
            }
    
              //LCS
             k1[1] = b[1];
             int i, k;
             for(i = 2, k = 1; i < t1; i++){
                  if(b[i] > k1[k]) k1[++k] = b[i];
             else {
                 l = 1, r = k;
                while( l <= r){
                    mid = (l + r) /2;
                   if(k1[mid] < b[i]) l = mid + 1;
                   else if(k1[mid] > b[i]) r = mid - 1;
                   else break;
                }
                k1[l] = a[i];
               }
             }
             if(p == 0) k = 0;
             int temp1 = k;
             //LDS
         //    for(int q = 1; q < t2; q++)
           //     printf("%.2lf ",c[q]);
             k2[1] =c[1];
             for(i = 2, k = 1; i < t2; i++){
                 if(c[i] < k2[k]) k2[++k] = c[i];
             else {
                l = 1, r = k;
             while( l <= r){
                   mid = (l + r) /2;
                  if(k2[mid] > c[i]) l = mid + 1;
                  else if(k2[mid] < c[i]) r= mid - 1;
                  else break;
             }
             k2[l] = c[i];
               }
             }
             if(p == n) k = 0;
             int temp2 = k;
            int x = temp1 + temp2;
           // printf("%d %d
    ",temp1,temp2);
    
            max1 = max(max1,x);
        }
        printf("%d",n - max1);
       return 0;
    }
    View Code
  • 相关阅读:
    在线微博数据可视化
    SAP系统和微信集成的系列教程之六:如何通过OAuth2获取微信用户信息并显示在SAP UI5应用中
    SAP系统和微信集成的系列教程之五:如何将SAP UI5应用嵌入到微信公众号菜单中
    Jerry在2020 SAP全球技术大会的分享:SAP Spartacus技术介绍的文字版
    索引的正确“打开姿势”
    15个问题告诉你如何使用Java泛型
    华为云FusionInsight MRS:千余节点滚动升级业务无中断
    你的开发好帮手:下一代云原生开发工具技术
    云图说|读请求太多怎么办?一键读写分离来帮忙
    FusionInsight MRS:你的大数据“管家”
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4365832.html
Copyright © 2011-2022 走看看