zoukankan      html  css  js  c++  java
  • BestCoder Round #38 1002——数学——Greatest Greatest Common Divisor

    Problem Description

    Pick two numbers ai,aj(ij) from a sequence to maximize the value of their greatest common divisor.

    Input

    Multiple test cases. In the first line there is an integer T, indicating the number of test cases. For each test cases, the first line contains an integer n, the size of the sequence. Next line contains n numbers, from a1 to an1T100,2n105,1ai105. The case for n104 is no more than 10.

    Output

    For each test case, output one line. The output format is Case #xansx is the case number, starting from 1ans is the maximum value of greatest common divisor.

    Sample Input
    2
    4
    1 2 3 4
    3
    3 6 9
    
    Sample Output
    Case #1: 2
    Case #2: 3

     大意:最大公约数得一种求法,以i为最大公约数,如果i*j存在的话说明这个数被i整除,只要看有多少个数符合这个条件那么i就是这个最大公约数

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int MAX = 100010;
    int a[MAX];
    int num[MAX];
    int main()
    {
        int temp = 1;
        int n,T;
        scanf("%d",&T);
        while(T--){
            int max1 = 0;
            memset(a,0,sizeof(a));
            memset(num,0,sizeof(num));
            scanf("%d",&n);
            for(int i = 1; i <= n ; i++)
                scanf("%d",&a[i]);
            for(int i = 1; i <= n ; i++)
                num[a[i]]++;
            for(int i = 1; i <= 100000; i++){
                int tot = 0;
                for(int j = 1 ; i*j <= 100000;j++)
                    tot += num[i*j];
                if(tot >= 2)
               max1 = max(max1,i);
            }
            printf("Case #%d :%d
    ",temp++,max1);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    powerdesigner反向MySQL5.1数据库 生成ER图
    Sublime Text 2 使用心得
    MyEclipse老是弹出problem occurred窗口
    Jquery ui Datepicker 的汉化
    jsp 中的getParameter和getAttribute
    jquery easyui
    struts2 annotation方式的下载(实用版)
    Sublime Text 2
    struts2框架搭建的三个步骤
    任意角度的平行四边形的碰撞检测原理
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4438143.html
Copyright © 2011-2022 走看看