zoukankan      html  css  js  c++  java
  • URAL1303——贪心——Minimal Coverage

    Description

    Given set of line segments [L i, R i] with integer coordinates of their end points. Your task is to find the minimal subset of the given set which covers segment [0, M] completely (M is a positive integer).

    Input

    First line of the input contains an integer M (1 ≤ M ≤ 5000). Subsequent lines of input contain pairs of integers L i and R i (−50000 ≤ L i< R i ≤ 50000). Each pair of coordinates is placed on separate line. Numbers in the pair are separated with space. Last line of input data contains a pair of zeroes. The set contains at least one and at most 99999 segments.

    Output

    Your program should print in the first line of output the power of minimal subset of segments which covers segment [0, M]. The list of segments of covering subset must follow. Format of the list must be the same as described in input with exception that ending pair of zeroes should not be printed. Segments should be printed in increasing order of their left end point coordinate.
    If there is no covering subset then print “No solution” to output.

    Sample Input

    inputoutput
    1
    -1 0
    -5 -3
    2 5
    0 0
    
    No solution
    
    1
    -1 0
    0 1
    0 0
    
    1
    0 1
    
     大意:找最少的覆盖区间,现在输入里面处理没用的数据,然后对于begin开始排序,找到在起点(end前一个点)前t[i].end最大的,不断更新end点如果nend没有被更新,说明没有点能够到达
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    struct edge{
        int b,e;
    }t[100010];
    bool vis[100010];
    bool cmp(edge i,edge j){
        if(i.b == j.b)
            return i.e < j.e;
        return i.b < j.b;
    }
    int main()
    {
        int M;
        int x,y;
        while(~scanf("%d",&M)){
            int count = 1;
            memset(vis,false,sizeof(vis));
            while(~scanf("%d%d",&x,&y)){
                if(x == 0 && y == 0) break;
                if(y <= 0 || x >= M || x == y)
                    continue;
                t[count].b = x;
                t[count++].e = y;
            }
            sort(t+1, t+count,cmp);
            int end = 0,pos = 1;
            int flag = 1,res = 0;;
            while(end < M){
                int end1 = 0,npos = 1;
                while(pos < count && t[pos].b <= end){
                    if(t[pos].e > end1){
                        end1 = t[pos].e;
                        npos = pos;
                    }
                    pos++;
                }
                if(end1 == 0) {flag = 0 ;break;}
                end = end1;
                vis[npos] = 1;
                res++;
            }
            if(flag == 0) printf("No solution
    ");
            else {
                printf("%d
    ",res);
                for(int i = 1; i < count ;i++){
                    if(vis[i])
                        printf("%d %d
    ",t[i].b,t[i].e);
                }
            }
        }
            return 0;
        }
    
        
    

      

  • 相关阅读:
    pc 端支付宝支付流程
    crontab
    Java集合之HashSet
    Java内存与垃圾收集知识总结
    Volley设计思想和流程分析
    java内部类
    HandlerThread源码分析
    IntentService源码分析
    Android消息机制:Looper,MessageQueue,Message与handler
    LeetCode340 Longest Substring with At Most K Distinct Characters
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4495009.html
Copyright © 2011-2022 走看看