zoukankan      html  css  js  c++  java
  • URAL1303——贪心——Minimal Coverage

    Description

    Given set of line segments [L i, R i] with integer coordinates of their end points. Your task is to find the minimal subset of the given set which covers segment [0, M] completely (M is a positive integer).

    Input

    First line of the input contains an integer M (1 ≤ M ≤ 5000). Subsequent lines of input contain pairs of integers L i and R i (−50000 ≤ L i< R i ≤ 50000). Each pair of coordinates is placed on separate line. Numbers in the pair are separated with space. Last line of input data contains a pair of zeroes. The set contains at least one and at most 99999 segments.

    Output

    Your program should print in the first line of output the power of minimal subset of segments which covers segment [0, M]. The list of segments of covering subset must follow. Format of the list must be the same as described in input with exception that ending pair of zeroes should not be printed. Segments should be printed in increasing order of their left end point coordinate.
    If there is no covering subset then print “No solution” to output.

    Sample Input

    inputoutput
    1
    -1 0
    -5 -3
    2 5
    0 0
    
    No solution
    
    1
    -1 0
    0 1
    0 0
    
    1
    0 1
    
     大意:找最少的覆盖区间,现在输入里面处理没用的数据,然后对于begin开始排序,找到在起点(end前一个点)前t[i].end最大的,不断更新end点如果nend没有被更新,说明没有点能够到达
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    struct edge{
        int b,e;
    }t[100010];
    bool vis[100010];
    bool cmp(edge i,edge j){
        if(i.b == j.b)
            return i.e < j.e;
        return i.b < j.b;
    }
    int main()
    {
        int M;
        int x,y;
        while(~scanf("%d",&M)){
            int count = 1;
            memset(vis,false,sizeof(vis));
            while(~scanf("%d%d",&x,&y)){
                if(x == 0 && y == 0) break;
                if(y <= 0 || x >= M || x == y)
                    continue;
                t[count].b = x;
                t[count++].e = y;
            }
            sort(t+1, t+count,cmp);
            int end = 0,pos = 1;
            int flag = 1,res = 0;;
            while(end < M){
                int end1 = 0,npos = 1;
                while(pos < count && t[pos].b <= end){
                    if(t[pos].e > end1){
                        end1 = t[pos].e;
                        npos = pos;
                    }
                    pos++;
                }
                if(end1 == 0) {flag = 0 ;break;}
                end = end1;
                vis[npos] = 1;
                res++;
            }
            if(flag == 0) printf("No solution
    ");
            else {
                printf("%d
    ",res);
                for(int i = 1; i < count ;i++){
                    if(vis[i])
                        printf("%d %d
    ",t[i].b,t[i].e);
                }
            }
        }
            return 0;
        }
    
        
    

      

  • 相关阅读:
    WebForm——浏览器兼容、旋转、缩放、倾斜、移动
    System.Thread.TImer控件——http://www.360doc.com/content/11/0812/11/1039473_139824496.shtml
    U8API——向U8数据库表导入数据
    Grid++Report——打印功能
    Winform—C#读写config配置文件
    WinForm—控制文本框只能输入整数(包括小数)
    WinForm—串口通讯
    SQL Server 数据库存储过程实例
    SQL Server数据库——数据库的数据导出与数据导入
    FlowPortal-BPM——功能:判断数据库表中字段是否重复并阻止提交或保存
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4495009.html
Copyright © 2011-2022 走看看