zoukankan      html  css  js  c++  java
  • HDU5095——水过——Linearization of the kernel functions in SVM

    Problem Description
    SVM(Support Vector Machine)is an important classification tool, which has a wide range of applications in cluster analysis, community division and so on. SVM The kernel functions used in SVM have many forms. Here we only discuss the function of the form f(x,y,z) = ax^2 + by^2 + cy^2 + dxy + eyz + fzx + gx + hy + iz + j. By introducing new variables p, q, r, u, v, w, the linearization of the function f(x,y,z) is realized by setting the correspondence x^2 <-> p, y^2 <-> q, z^2 <-> r, xy <-> u, yz <-> v, zx <-> w and the function f(x,y,z) = ax^2 + by^2 + cy^2 + dxy + eyz + fzx + gx + hy + iz + j can be written as g(p,q,r,u,v,w,x,y,z) = ap + bq + cr + du + ev + fw + gx + hy + iz + j, which is a linear function with 9 variables.

    Now your task is to write a program to change f into g.
     
    Input
    The input of the first line is an integer T, which is the number of test data (T<120). Then T data follows. For each data, there are 10 integer numbers on one line, which are the coefficients and constant a, b, c, d, e, f, g, h, i, j of the function f(x,y,z) = ax^2 + by^2 + cy^2 + dxy + eyz + fzx + gx + hy + iz + j.
     
    Output
    For each input function, print its correspondent linear function with 9 variables in conventional way on one line.
     
    Sample Input
    2 0 46 3 4 -5 -22 -8 -32 24 27 2 31 -5 0 0 12 0 0 -49 12
     
    Sample Output
    46q+3r+4u-5v-22w-8x-32y+24z+27 2p+31q-5r+12w-49z+12
     
    Source
     
    Recommend
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int T;
    int a[11];
    int vis[11];
    char b[12] = "pqruvwxyz";
    int main()
    {
        scanf("%d",&T);
        while(T--){
            memset(vis,0,sizeof(vis));
            for(int i = 1; i <= 10 ; i++){
                scanf("%d",&a[i]);
                if(a[i] == 0)
                    vis[i] = 1;
            }
            if(a[1] == 0&&a[2] ==0&& a[3] ==0&& a[4] ==0&& a[5] ==0&& a[6] ==0&& a[7] ==0&& a[8] ==0&& a[9] ==0&& a[10] == 0){
                printf("0
    ");
                continue;
            }
            int flag = 1;
            for(int i = 1; i <= 10 ; i++){
                if(a[i] == 0) continue;
                if(flag && a[i]){
                    if(i!=10){
                        if(a[i] == 1)
                        printf("%c",b[i-1]);
                        else if(a[i] == -1)
                            printf("-%c",b[i-1]);
                        else 
                           printf("%d%c",a[i],b[i-1]);
                    }
                    else printf("%d",a[i]);
                    flag = 0;
                }
                else {
                    if(a[i] > 0){
                        printf("+");
                        if(i!=10){
                        if(a[i] == 1)
                            printf("%c",b[i-1]);
                        else 
                        printf("%d%c",a[i],b[i-1]);
                        }
                        else printf("%d",a[i]);
                    }
                    else {
                        printf("-");
                        if(i!=10){
                        if(a[i] == -1)
                            printf("%c",b[i-1]);
                        else 
                        printf("%d%c",-a[i],b[i-1]);
                        }
                        else printf("%d",-a[i]);
                    }
                }
            }
            puts("");
        }
        return 0;
    }
                
    
    
            
    

      

  • 相关阅读:
    【计网实验6】静态路由实验
    【计网】第六章
    【操统5】第六章/第七章
    【计网 6】链路层
    【Java学习1】
    【机器学习1】
    【计网实验】packet
    【计网】第五章网络层:控制平面
    python中math模块常用的方法整理
    使用python如何进行截小图
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4515446.html
Copyright © 2011-2022 走看看