zoukankan      html  css  js  c++  java
  • HDU1059——多重部分和问题——Dividing

    Problem Description
    Marsha and Bill own a collection of marbles. They want to split the collection among themselves so that both receive an equal share of the marbles. This would be easy if all the marbles had the same value, because then they could just split the collection in half. But unfortunately, some of the marbles are larger, or more beautiful than others. So, Marsha and Bill start by assigning a value, a natural number between one and six, to each marble. Now they want to divide the marbles so that each of them gets the same total value. 
    Unfortunately, they realize that it might be impossible to divide the marbles in this way (even if the total value of all marbles is even). For example, if there are one marble of value 1, one of value 3 and two of value 4, then they cannot be split into sets of equal value. So, they ask you to write a program that checks whether there is a fair partition of the marbles.
     
    Input
    Each line in the input describes one collection of marbles to be divided. The lines consist of six non-negative integers n1, n2, ..., n6, where ni is the number of marbles of value i. So, the example from above would be described by the input-line ``1 0 1 2 0 0''. The maximum total number of marbles will be 20000. 

    The last line of the input file will be ``0 0 0 0 0 0''; do not process this line.
     
    Output
    For each colletcion, output ``Collection #k:'', where k is the number of the test case, and then either ``Can be divided.'' or ``Can't be divided.''. 

    Output a blank line after each test case.
     
    Sample Input
    1 0 1 2 0 0 1 0 0 0 1 1 0 0 0 0 0 0
     
    Sample Output
    Collection #1: Can't be divided. Collection #2: Can be divided.
     
    Source
     
    Recommend
    JGShining   |   We have carefully selected several similar problems for you:  1114 1081 1074 1078 1160 
    大意:有6种货币,每种货币不超过20000数目,价值从1到6,问你是否能到达一个数num,num=sum/2,sum指总的价值
    多重部分和问题模型 (来自挑战程序设计竞赛):
    有n种不同大小的数字ai,每种各mi个。判断是否可以从这些数字中选出若干使他们的和恰好为K
    O(kΣimi)
    定义:dp[i+1][j] 表示用前i种数字是否能加合成j
    状态转移方程  dp[i+1][j] = (0<=k<=mi且k*a[i] <= j 时存在使dp[i][j-k*a[i]]为真的k)
    即 dp[i+1][j] |= dp[i][j-k*a[i]);
    int n,K;
    int a[MAX_N];
    int m[MAX_N];
    bool dp[MAX_N+1][MAX_N+1];
    
    void solve()
    {
        dp[0][0] = true;
        for(int i = 0 ; i < n ;i++){
            for(int j = 0 ; j <= K; j++){
                for(int k = 0 ; j <= m[i] && k *a[i] <= j ;k++){
                    dp[i+1][j] |= dp[i][j - k*a[i]];
                }
            }
        }
        if(dp[n][K]) printf("Yes
    ");
        else pritnf("No
    ");
    }
    

    上述复杂度过高

    O(nk)

    定义:dp[i+1][j] 表示用前i种数加和得到j时第i种数最多能剩余多少个(不能加和得到i的情况下为-1)

                  m[i]   (dp[i][j] >= 0)

    动态转移方程  dp[i+1][j] =     -1      (j < a[i] || dp[i+1][j-a[i]] <= 0)

                  dp[i+1][j-a[i]] - 1  else 
    初始化为-1
    int n,K;
    int a[MAX_N];
    int m[MAX_N];
    int dp[MAX_K+1];
    void solve()
    {
        memset(dp,-1,sizeof(dp));
            dp[0] = 0;
        for(int i = 0 ; i < n ;i++){
            for(int j = 0 ; j <= K; j++){
                if(dp[j] >= 0){
                    dp[j] = m[i];
                }
                else if(j < a[i] || dp[j-a[i]] <= 0){
                    dp[j] = -1;
                }
                else 
                    dp[j] = dp[j-a[i]] - 1;
            }
        }
        if(dp[K] >= 0) printf("Yes
    ");
        else printf("No
    ");
    }
    

    AC代码

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int dp[121000];
    int main()
    {
        int a[7] = {1,2,3,4,5,6};
        int m[7];
        int col = 1;
           while(~scanf("%d%d%d%d%d%d",&m[0],&m[1],&m[2],&m[3],&m[4],&m[5])){
            memset(dp,-1,sizeof(dp));
            if(m[0] + m[1] + m[2] + m[3] + m[4] + m[5] == 0)
            break;
            printf("Collection #%d:
    ",col++);
            if((m[0] + m[1]*2 + m[2]*3 + m[3]*4 + m[4]*5 + m[5]*6)%2 == 1){
                printf("Can't be divided.
    ");
            }
            else {
                int sum = (m[0] + m[1]*2 + m[2]*3 + m[3]*4 + m[4]*5 + m[5]*6)/2;
                    dp[0] = 0;
                    for(int i = 0; i < 6; i++){
                        for(int j = 0 ; j <= sum ;j++){
                            if(dp[j] >= 0) dp[j] = m[i];
                            else if(j < a[i] || dp[j-a[i]] <= 0){
                                dp[j] = -1;
                            }
                            else {
                                dp[j] = dp[j-a[i]] - 1;
                            }
                        }
                    }
                    if(dp[sum] >= 0)
                     printf("Can be divided.
    ");
                    else printf("Can't be divided.
    ");
            }
             puts(""); 
        }
        return 0;
    }
    

      

     
  • 相关阅读:
    css应用视觉设计
    HTML中name、id、class的区别介绍
    css怎么选择父元素下的某个元素?
    css权重如何计算的?
    如何更有效的消灭watchdogs挖矿病毒?华为云DCS Redis为您支招
    分布式缓存Redis应用场景解析
    【云速建站】让你轻轻松松建立属于自己的网店
    一张图读懂什么是专属分布式存储
    【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理(2)
    【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理(1)
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4539398.html
Copyright © 2011-2022 走看看