zoukankan      html  css  js  c++  java
  • Codeforces Round #306 (Div. 2)——C模拟——Divisibility by Eight

    You are given a non-negative integer n, its decimal representation consists of at most 100 digits and doesn't contain leading zeroes.

    Your task is to determine if it is possible in this case to remove some of the digits (possibly not remove any digit at all) so that the result contains at least one digit, forms a non-negative integer, doesn't have leading zeroes and is divisible by 8. After the removing, it is forbidden to rearrange the digits.

    If a solution exists, you should print it.

    Input

    The single line of the input contains a non-negative integer n. The representation of number n doesn't contain any leading zeroes and its length doesn't exceed 100 digits.

    Output

    Print "NO" (without quotes), if there is no such way to remove some digits from number n.

    Otherwise, print "YES" in the first line and the resulting number after removing digits from number n in the second line. The printed number must be divisible by 8.

    If there are multiple possible answers, you may print any of them.

    Sample test(s)
    input
    3454
    output
    YES
    344
    input
    10
    output
    YES
    0
    input
    111111
    output
    NO
    渣代码。
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int main()
    {
        char a[110];
        scanf("%s",a);
        int n = strlen(a);
        if(n == 1){
            if((a[0] - '0')%8 == 0) {
                printf("YES
    ");
                printf("%c",a[0]);
                return 0;
                }
        }
        else if(n == 2){
            if((a[0] - '0')%8 == 0) {
                printf("YES
    ");
                printf("%c",a[0]);
                return 0;
                }
            if((a[1] - '0')%8 == 0) {
                printf("YES
    ");
                printf("%c",a[1]);
                return 0;
                }
            if(((a[0]-'0')*10+(a[1]-'0'))%8 == 0&&a[0]!='0'){
                printf("YES
    ");
                printf("%c%c",a[0],a[1]);
               return 0;
            }
            if(((a[1]-'0')*10+(a[0]-'0'))%8 == 0&&a[1]!='0'){
                printf("YES
    ");
                printf("%c%c",a[1],a[0]);
                return 0;
            }
        }
        else {
        for(int i = 0 ; i < n ; i++){
            for(int j = i + 1; j < n; j++){
                for(int k = j + 1; k < n; k++){
                  
    
                  //   printf("%d ",a[i]-'0'+a[k]-'0'+a[j]-'0');
            if((a[i] - '0')%8 == 0) {
                printf("YES
    ");
                printf("%c",a[i]);
              
                return 0;
                }
            if((a[j] - '0')%8 == 0) {
                printf("YES
    ");
                printf("%c",a[j]);
    
                return 0;
                }
               if((a[k] - '0')%8 == 0) {
                printf("YES
    ");
                printf("%c",a[k]);
                return 0;
                }
            if(((a[i]-'0')*10+(a[j]-'0'))%8 == 0&&a[i]!='0'){
                printf("YES
    ");
                printf("%c%c",a[i],a[j]);
               return 0;
            }
            if(((a[j]-'0')*10+(a[k]-'0'))%8 == 0&&a[j]!='0'){
                printf("YES
    ");
                printf("%c%c",a[j],a[k]);
                return 0;
            }
            if(((a[i]-'0')*10+(a[k]-'0'))%8 == 0&&a[i]!='0'){
                printf("YES
    ");
                printf("%c%c",a[i],a[k]);
                return 0;
            }
    
                    if(a[i]!='0' &&( (a[i] -'0')*100 + (a[j] - '0')*10 + (a[k] -'0'))%8 == 0){
                        printf("YES
    ");
                        printf("%c%c%c",a[i],a[j],a[k]);
                        return 0;
                    }
    
                }
            }
        }
    }
        printf("NO");
        return 0;
    }
    

      

  • 相关阅读:
    工厂模式 ioc dom4j 反射之我的一点理解
    hibernate中注解方式中的控制反转
    java中的数据存储(堆,栈) 很重要
    hibernate中映射关系总结
    三极管使用方法
    OC OD介绍
    HP Jack介绍
    Jlink接口的Jtag和SWD接口定义
    什么是域什么是工作组
    Ubuntu安装.run文件
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4555089.html
Copyright © 2011-2022 走看看