zoukankan      html  css  js  c++  java
  • Codeforces Round #Pi (Div. 2)——map——Geometric Progression

    Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and a sequence a, consisting of n integers.

    He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common ratio k.

    A subsequence of length three is a combination of three such indexes i1, i2, i3, that 1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

    A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

    Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

    Input

    The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.

    The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — elements of the sequence.

    Output

    Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

    Sample test(s)
    input
    5 2
    1 1 2 2 4
    output
    4
    input
    3 1
    1 1 1
    output
    1
    input
    10 3
    1 2 6 2 3 6 9 18 3 9
    output
    6
    Note

    In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

    #include <cstdio>
    #include <algorithm>
    #include <iostream>
    #include <sstream>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <vector>
    #include <queue>
    #include <deque>
    #include <stack>
    #include <list>
    #include <map>
    #include <set>
    #include <bitset>
    #include <cstdlib>
    #include <ctime>
    using namespace std;
    
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
    typedef long long ll;
    const int MAXN = 2e5 + 10;
    const int INF = 0x3f3f3f3f;
    const int MOD = 1e9 + 7;
    map<ll, ll> c1, c2;
    
    int main(void)    { 
        ll ans = 0, x;  ll n, k;
        scanf ("%I64d%I64d", &n, &k);
        for (int i=1; i<=n; ++i)    {
            scanf ("%I64d", &x);
            if (x % (k * k) == 0)   ans += c1[x/k];
            if (x % k == 0) c1[x] += c2[x/k];       
            c2[x]++;
        }
    
        printf ("%I64d
    ", ans);
    
        return 0;
    }
    

      

  • 相关阅读:
    如何通过代码设置WPF控件的字体,颜色
    WPF DataGrid 控件的运用
    WPF 动态创建 DataTemplate 及数据绑定
    WPF Grid 用 C# 代码后台设置
    C# a++ 与 ++a 的区别
    WPF 绑定以基础数据类型为集合的无字段名的数据源
    Visual Studio 快捷键
    WPF TabItem.Collapse 的问题
    C# XML 文件中的空格值问题
    C# XML文件操作
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4709222.html
Copyright © 2011-2022 走看看