zoukankan      html  css  js  c++  java
  • Codeforces Round #Pi (Div. 2)——map——Geometric Progression

    Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and a sequence a, consisting of n integers.

    He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common ratio k.

    A subsequence of length three is a combination of three such indexes i1, i2, i3, that 1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

    A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

    Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

    Input

    The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.

    The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — elements of the sequence.

    Output

    Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

    Sample test(s)
    input
    5 2
    1 1 2 2 4
    output
    4
    input
    3 1
    1 1 1
    output
    1
    input
    10 3
    1 2 6 2 3 6 9 18 3 9
    output
    6
    Note

    In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

    #include <cstdio>
    #include <algorithm>
    #include <iostream>
    #include <sstream>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <vector>
    #include <queue>
    #include <deque>
    #include <stack>
    #include <list>
    #include <map>
    #include <set>
    #include <bitset>
    #include <cstdlib>
    #include <ctime>
    using namespace std;
    
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
    typedef long long ll;
    const int MAXN = 2e5 + 10;
    const int INF = 0x3f3f3f3f;
    const int MOD = 1e9 + 7;
    map<ll, ll> c1, c2;
    
    int main(void)    { 
        ll ans = 0, x;  ll n, k;
        scanf ("%I64d%I64d", &n, &k);
        for (int i=1; i<=n; ++i)    {
            scanf ("%I64d", &x);
            if (x % (k * k) == 0)   ans += c1[x/k];
            if (x % k == 0) c1[x] += c2[x/k];       
            c2[x]++;
        }
    
        printf ("%I64d
    ", ans);
    
        return 0;
    }
    

      

  • 相关阅读:
    zzuli 1908
    继承 封装 多态 java的三大特性
    FZU 2232
    zzuli 1079
    zzuli 1023
    二分图的匹配 hdu 1083
    CodeIgniter学习笔记(五)——CI超级对象中的uri
    CodeIgniter学习笔记(四)——CI超级对象中的load装载器
    CodeIgniter学习笔记(三)——CI中的视图
    CodeIgniter学习笔记(二)——CI中的控制器
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4709222.html
Copyright © 2011-2022 走看看