zoukankan      html  css  js  c++  java
  • Codeforces Round #Pi (Div. 2)——map——Geometric Progression

    Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and a sequence a, consisting of n integers.

    He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common ratio k.

    A subsequence of length three is a combination of three such indexes i1, i2, i3, that 1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

    A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

    Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

    Input

    The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.

    The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — elements of the sequence.

    Output

    Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

    Sample test(s)
    input
    5 2
    1 1 2 2 4
    output
    4
    input
    3 1
    1 1 1
    output
    1
    input
    10 3
    1 2 6 2 3 6 9 18 3 9
    output
    6
    Note

    In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

    #include <cstdio>
    #include <algorithm>
    #include <iostream>
    #include <sstream>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <vector>
    #include <queue>
    #include <deque>
    #include <stack>
    #include <list>
    #include <map>
    #include <set>
    #include <bitset>
    #include <cstdlib>
    #include <ctime>
    using namespace std;
    
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
    typedef long long ll;
    const int MAXN = 2e5 + 10;
    const int INF = 0x3f3f3f3f;
    const int MOD = 1e9 + 7;
    map<ll, ll> c1, c2;
    
    int main(void)    { 
        ll ans = 0, x;  ll n, k;
        scanf ("%I64d%I64d", &n, &k);
        for (int i=1; i<=n; ++i)    {
            scanf ("%I64d", &x);
            if (x % (k * k) == 0)   ans += c1[x/k];
            if (x % k == 0) c1[x] += c2[x/k];       
            c2[x]++;
        }
    
        printf ("%I64d
    ", ans);
    
        return 0;
    }
    

      

  • 相关阅读:
    C#方法笔记二:四种类型的参数
    C#+AE 判断点是否在面内的方法
    C#:ref和out的联系及区别。
    C#+AE 调整TOCControl控件中图层的显示顺序
    C# 笔记2:面向对象
    AE10.0 Runtime绑定,如何实现
    C#+AE 用MapControl加载栅格格式文件
    Oracle 10g安装之后解锁Scott的方法
    (转载一篇)Windows7与ArcGIS Desktop9.3冲突问题解决(由QQ安装问题引出)(经本人验证已解决)
    C#方法笔记一:C#4.0新特性:命名参数和可选参数
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4709222.html
Copyright © 2011-2022 走看看