zoukankan      html  css  js  c++  java
  • Codeforces Round #Pi (Div. 2)——map——Geometric Progression

    Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and a sequence a, consisting of n integers.

    He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common ratio k.

    A subsequence of length three is a combination of three such indexes i1, i2, i3, that 1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

    A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

    Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

    Input

    The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.

    The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — elements of the sequence.

    Output

    Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

    Sample test(s)
    input
    5 2
    1 1 2 2 4
    output
    4
    input
    3 1
    1 1 1
    output
    1
    input
    10 3
    1 2 6 2 3 6 9 18 3 9
    output
    6
    Note

    In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

    #include <cstdio>
    #include <algorithm>
    #include <iostream>
    #include <sstream>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <vector>
    #include <queue>
    #include <deque>
    #include <stack>
    #include <list>
    #include <map>
    #include <set>
    #include <bitset>
    #include <cstdlib>
    #include <ctime>
    using namespace std;
    
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
    typedef long long ll;
    const int MAXN = 2e5 + 10;
    const int INF = 0x3f3f3f3f;
    const int MOD = 1e9 + 7;
    map<ll, ll> c1, c2;
    
    int main(void)    { 
        ll ans = 0, x;  ll n, k;
        scanf ("%I64d%I64d", &n, &k);
        for (int i=1; i<=n; ++i)    {
            scanf ("%I64d", &x);
            if (x % (k * k) == 0)   ans += c1[x/k];
            if (x % k == 0) c1[x] += c2[x/k];       
            c2[x]++;
        }
    
        printf ("%I64d
    ", ans);
    
        return 0;
    }
    

      

  • 相关阅读:
    VTK 体绘制讨论_光照&阴影、VTKLODProp3D
    VTK 体绘制讨论_颜色传输函数
    VTK 体绘制讨论_梯度不透明度传输函数
    VTK 体绘制讨论_不透明度传输函数
    VTK 体绘制裁剪_Cripping技术
    VTK 体绘制裁剪_Cropping技术
    VTK 纹理映射体绘制_三维纹理映射
    VTK 纹理映射体绘制_二维纹理映射
    VTK 体绘制_固定点光线投影体绘制与GPU加速光线投影体绘制
    VTK 体绘制_光线投影+最大密度投影+等值面法
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4709222.html
Copyright © 2011-2022 走看看