zoukankan      html  css  js  c++  java
  • ICP、MRR、BKA等特性

    一、Index Condition Pushdown(ICP)

    Index Condition Pushdown (ICP)是 mysql 使用索引从表中检索行数据的一种优化方式,从mysql5.6开始支持,mysql5.6之前,存储引擎会通过遍历索引定位基表中的行,然后返回给Server层,再去为这些数据行进行WHERE后的条件的过滤。mysql 5.6之后支持ICP后,如果WHERE条件可以使用索引,MySQL 会把这部分过滤操作放到存储引擎层,存储引擎通过索引过滤,把满足的行从表中读取出。ICP能减少引擎层访问基表的次数和 Server层访问存储引擎的次数。

    • ICP的目标是减少从基表中读取操作的数量,从而降低IO操作

    • 对于InnoDB表,ICP只适用于辅助索引

    • 当使用ICP优化时,执行计划的Extra列显示Using indexcondition提示

    • 数据库配置 optimizer_switch="index_condition_pushdown=on”;

    使用场景举例

    辅助索引INDEX (a, b, c)

    SELECT * FROM peopleWHERE a='12345' AND b LIKE '%xx%'AND c LIKE '%yy%';
    

    若不使用ICP:则是通过二级索引中a的值去基表取出所有a='12345'的数据,然后server层再对b LIKE '%xx%'AND c LIKE '%yy%' 进行过滤

    若使用ICP:则b LIKE '%xx%'AND c LIKE '%yy%'的过滤操作在二级索引中完成,然后再去基表取相关数据

    ICP特点

    • mysql 5.6中只支持 MyISAM、InnoDB、NDB cluster

    • mysql 5.6中不支持分区表的ICP,从MySQL 5.7.3开始支持分区表的ICP

    • ICP的优化策略可用于range、ref、eq_ref、ref_or_null 类型的访问数据方法

    • 不支持主建索引的ICP(对于Innodb的聚集索引,完整的记录已经被读取到Innodb Buffer,此时使用ICP并不能降低IO操作)

    • 当 SQL 使用覆盖索引时但只检索部分数据时,ICP 无法使用

    • ICP的加速效果取决于在存储引擎内通过ICP筛选掉的数据的比例

    二、Multi-Range Read (MRR)

    MRR 的全称是 Multi-Range Read Optimization,是优化器将随机 IO 转化为顺序 IO 以降低查询过程中 IO 开销的一种手段,这对IO-bound类型的SQL语句性能带来极大的提升,适用于range ref eq_ref类型的查询

    MRR优化的几个好处

    使数据访问有随机变为顺序,查询辅助索引是,首先把查询结果按照主键进行排序,按照主键的顺序进行书签查找

    减少缓冲池中页被替换的次数

    批量处理对键值的操作

    在没有使用MRR特性时

    第一步 先根据where条件中的辅助索引获取辅助索引与主键的集合,结果集为rest

    select key_column, pk_column from tb where key_column=x order by key_column
    

    第二步 通过第一步获取的主键来获取对应的值

    for each pk_column value in rest do:
    select non_key_column from tb where pk_column=val
    

    使用MRR特性时

    第一步 先根据where条件中的辅助索引获取辅助索引与主键的集合,结果集为rest

    select key_column, pk_column from tb where key_column = x order by key_column
    

    第二步 将结果集rest放在buffer里面(read_rnd_buffer_size 大小直到buffer满了),然后对结果集rest按照pk_column排序,得到结果集是rest_sort

    第三步 利用已经排序过的结果集,访问表中的数据,此时是顺序IO.

    select non_key_column fromtb where pk_column in (rest_sort)
    

    在不使用 MRR 时,优化器需要根据二级索引返回的记录来进行“回表”,这个过程一般会有较多的随机IO, 使用MRR时,SQL语句的执行过程是这样的:

    • 优化器将二级索引查询到的记录放到一块缓冲区中

    • 如果二级索引扫描到文件的末尾或者缓冲区已满,则使用快速排序对缓冲区中的内容按照主键进行排序

    • 用户线程调用MRR接口取cluster index,然后根据cluster index 取行数据

    • 当根据缓冲区中的 cluster index取完数据,则继续调用过程 2) 3),直至扫描结束

    通过上述过程,优化器将二级索引随机的 IO 进行排序,转化为主键的有序排列,从而实现了随机 IO 到顺序 IO 的转化,提升性能

    此外MRR还可以将某些范围查询,拆分为键值对,来进行批量的数据查询,如下:

    SELECT * FROM t WHERE key_part1 >= 1000 AND key_part1 < 2000AND key_part2 = 10000;

    表t上有二级索引(key_part1, key_part2),索引根据key_part1,key_part2的顺序排序。

    若不使用MRR:此时查询的类型为Range,sql优化器会先将key_part1大于1000小于2000的数据取出,即使key_part2不等于10000,带取出之后再进行过滤,会导致很多无用的数据被取出

    若使用MRR:如果索引中key_part2不为10000的元组越多,最终MRR的效果越好。优化器会将查询条件拆分为(1000,1000),(1001,1000),... (1999,1000)最终会根据这些条件进行过滤

    相关参数

    当mrr=on,mrr_cost_based=on,则表示cost base的方式还选择启用MRR优化,当发现优化后的代价过高时就会不使用该项优化

    当mrr=on,mrr_cost_based=off,则表示总是开启MRR优化

    SET  @@optimizer_switch='mrr=on,mrr_cost_based=on';
    

    参数read_rnd_buffer_size 用来控制键值缓冲区的大小。二级索引扫描到文件的末尾或者缓冲区已满,则使用快速排序对缓冲区中的内容按照主键进行排序

    三、Batched Key Access (BKA) 和 Block Nested-Loop(BNL)

    Batched Key Access (BKA)  提高表 join 性能的算法。当被join的表能够使用索引时,就先排好顺序,然后再去检索被join的表,听起来和MRR类似,实际上MRR也可以想象成二级索引和 primary key的join

    如果被Join的表上没有索引,则使用老版本的BNL策略(BLOCK Nested-loop)

    BKA原理

    对于多表join语句,当MySQL使用索引访问第二个join表的时候,使用一个join buffer来收集第一个操作对象生成的相关列值。BKA构建好key后,批量传给引擎层做索引查找。key是通过MRR接口提交给引擎的(mrr目的是较为顺序)MRR使得查询更有效率。 

    大致的过程如下:

    • BKA使用join buffer保存由join的第一个操作产生的符合条件的数据

    • 然后BKA算法构建key来访问被连接的表,并批量使用MRR接口提交keys到数据库存储引擎去查找查找。

    • 提交keys之后,MRR使用最佳的方式来获取行并反馈给BKA

    BNL和BKA都是批量的提交一部分行给被join的表,从而减少访问的次数,那么它们有什么区别呢?

    • BNL比BKA出现的早,BKA直到5.6才出现,而NBL至少在5.1里面就存在。

    • BNL主要用于当被join的表上无索引

    • BKA主要是指在被join表上有索引可以利用,那么就在行提交给被join的表之前,对这些行按照索引字段进行排序,因此减少了随机IO,排序这才是两者最大的区别,但是如果被join的表没用索引呢?那就使用NBL

    BKA和BNL标识

    Using join buffer (Batched Key Access)和Using join buffer (Block Nested Loop)

    相关参数

    BAK使用了MRR,要想使用BAK必须打开MRR功能,而MRR基于mrr_cost_based的成本估算并不能保证总是使用MRR,官方推荐设置mrr_cost_based=off来总是开启MRR功能。打开BAK功能(BAK默认OFF):

    SET optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';
    

    BKA使用join buffer size来确定buffer的大小,buffer越大,访问被join的表/内部表就越顺序。

    BNL默认是开启的,设置BNL相关参数:

    SET optimizer_switch=’block_nested_loop’
    

    支持inner join, outer join, semi-join operations,including nested outer joins

    BKA主要适用于join的表上有索引可利用,无索引只能使用BNL

    四、总结

    ICP(Index Condition Pushdown

    Index Condition Pushdown是用索引去表里取数据的一种优化,减少了引擎层访问基表的次数和Server层访问存储引擎的次数,在引擎层就能够过滤掉大量的数据,减少io次数,提高查询语句性能

    MRR(Multi-Range Read

    是基于辅助/第二索引的查询,减少随机IO,并且将随机IO转化为顺序IO,提高查询效率。

    • 不使用MRR之前(MySQL5.6之前),先根据where条件中的辅助索引获取辅助索引与主键的集合,再通过主键来获取对应的值。辅助索引获取的主键来访问表中的数据会导致随机的IO(辅助索引的存储顺序并非与主键的顺序一致),随机主键不在同一个page里时会导致多次IO和随机读。

    • 使用MRR优化(MySQL5.6之后),先根据where条件中的辅助索引获取辅助索引与主键的集合,再将结果集放在buffer(read_rnd_buffer_size 直到buffer满了),然后对结果集按照pk_column排序,得到有序的结果集rest_sort。最后利用已经排序过的结果集,访问表中的数据,此时是顺序IO。即MySQL 将根据辅助索引获取的结果集根据主键进行排序,将无序化为有序,可以用主键顺序访问基表,将随机读转化为顺序读,多页数据记录可一次性读入或根据此次的主键范围分次读入,减少IO操作,提高查询效率。

    Nested Loop Join算法

    将驱动表/外部表的结果集作为循环基础数据,然后循环该结果集,每次获取一条数据作为下一个表的过滤条件查询数据,然后合并结果,获取结果集返回给客户端。Nested-Loop一次只将一行传入内层循环, 所以外层循环(的结果集)有多少行, 内存循环便要执行多少次,效率非常差。


    Block Nested-Loop Join
    算法

    将外层循环的行/结果集存入join buffer, 内层循环的每一行与整个buffer中的记录做比较,从而减少内层循环的次数。主要用于当被join的表上无索引。


    Batched Key Access
    算法

    当被join的表能够使用索引时,就先好顺序,然后再去检索被join的表。对这些行按照索引字段进行排序,因此减少了随机IO。如果被Join的表上没有索引,则使用老版本的BNL策略(BLOCK Nested-loop)。

  • 相关阅读:
    Maven跳过测试
    Maven教程
    使用订单号加锁
    SpringMVC重定向路径中带中文参数
    并发文章
    maven clean插件使用进阶
    线程池基础
    Session中短信验证码设置有效时间
    Linux命令
    下载并安装Cent OS 6.5
  • 原文地址:https://www.cnblogs.com/zero-gg/p/9718852.html
Copyright © 2011-2022 走看看