zoukankan      html  css  js  c++  java
  • POJ 3468 线段树区间求和

    线段树区间求和树节点不能只存和,只存和,会导致每次加数的时候都要更新到叶子节点,速度太慢(O(nlogn))。所以我们要存两个量,一个是原来的和nSum,一个是累加的增量Inc。

    在增加时,如果要加的区间正好覆盖一个节点,则增加其节点的Inc值,不再往下走,否则要更新nSum(加上本次增量),再将增量往下传,这样更新的复杂度就是O(log(n))。

     

    在查询时,如果待查区间不是正好覆盖一个节点,就将节点的Inc往下带,然后将Inc清0,接下来再往下查询。 Inc往下带的过程也是区间分解的过程,复杂度也是O(log(n))。                                                                                                                                                   
     
                                                                                       A Simple Problem with Integers
    Time Limit: 5000MS   Memory Limit: 131072K
    Total Submissions: 79334   Accepted: 24455
    Case Time Limit: 2000MS

    Description

    You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

    Input

    The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
    The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
    Each of the next Q lines represents an operation.
    "C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
    "Q a b" means querying the sum of AaAa+1, ... , Ab.

    Output

    You need to answer all Q commands in order. One answer in a line.

    Sample Input

    10 5
    1 2 3 4 5 6 7 8 9 10
    Q 4 4
    Q 1 10
    Q 2 4
    C 3 6 3
    Q 2 4
    

    Sample Output

    4
    55
    9
    15
      1 #include <iostream>
      2 #include<cstdio>
      3 using namespace std;
      4 struct CNode
      5 {
      6     int L ,R;
      7     CNode * pLeft, * pRight;
      8     long long nSum; //原来的和
      9     long long Inc; //增量c的累加
     10 };
     11 CNode Tree[200010]; // 2倍叶子节点数目就够
     12 int nCount = 0;
     13 int Mid( CNode * pRoot)
     14 {
     15     return (pRoot->L + pRoot->R)/2;
     16 }
     17 void BuildTree(CNode * pRoot,int L, int R)
     18 {
     19     pRoot->L = L;
     20     pRoot->R = R;
     21     pRoot->nSum = 0;
     22     pRoot->Inc = 0;
     23     if( L == R)
     24         return;
     25     nCount ++;
     26     pRoot->pLeft = Tree + nCount;
     27     nCount ++;
     28     pRoot->pRight = Tree + nCount;
     29     BuildTree(pRoot->pLeft,L,(L+R)/2);
     30     BuildTree(pRoot->pRight,(L+R)/2+1,R);
     31 }
     32 void Insert( CNode * pRoot,int i, int v)
     33 {
     34     if( pRoot->L == i && pRoot->R == i)
     35     {
     36         pRoot->nSum = v;
     37         return ;
     38     }
     39     pRoot->nSum += v;
     40     if( i <= Mid(pRoot))
     41         Insert(pRoot->pLeft,i,v);
     42     else
     43         Insert(pRoot->pRight,i,v);
     44 }
     45 void Add( CNode * pRoot, int a, int b, long long c)
     46 {
     47     if( pRoot->L == a && pRoot->R == b)
     48     {
     49         pRoot->Inc += c;
     50         return ;
     51     }
     52     pRoot->nSum += c * ( b - a + 1) ;
     53     if( b <= (pRoot->L + pRoot->R)/2)
     54         Add(pRoot->pLeft,a,b,c);
     55     else if( a >= (pRoot->L + pRoot->R)/2 +1)
     56         Add(pRoot->pRight,a,b,c);
     57     else
     58     {
     59         Add(pRoot->pLeft,a,
     60             (pRoot->L + pRoot->R)/2 ,c);
     61         Add(pRoot->pRight,
     62             (pRoot->L + pRoot->R)/2 + 1,b,c);
     63     }
     64 }
     65 long long QuerynSum( CNode * pRoot, int a, int b)
     66 {
     67     if( pRoot->L == a && pRoot->R == b)
     68         return pRoot->nSum +
     69                (pRoot->R - pRoot->L + 1) * pRoot->Inc ;
     70     pRoot->nSum += (pRoot->R - pRoot->L + 1) * pRoot->Inc ;
     71     Add( pRoot->pLeft,pRoot->L,Mid(pRoot),pRoot->Inc);
     72     Add( pRoot->pRight,Mid(pRoot) + 1,pRoot->R,pRoot->Inc);
     73     pRoot->Inc = 0;
     74     if( b <= Mid(pRoot))
     75         return QuerynSum(pRoot->pLeft,a,b);
     76     else if( a >= Mid(pRoot) + 1)
     77         return QuerynSum(pRoot->pRight,a,b);
     78     else
     79     {
     80         return QuerynSum(pRoot->pLeft,a,Mid(pRoot)) +
     81                QuerynSum(pRoot->pRight,Mid(pRoot) + 1,b);
     82     }
     83 }
     84 int main()
     85 {
     86     int n,q,a,b,c;
     87     char cmd[10];
     88     scanf("%d%d",&n,&q);
     89     int i,j,k;
     90     nCount = 0;
     91     BuildTree(Tree,1,n);
     92     for( i = 1; i <= n; i ++ )
     93     {
     94         scanf("%d",&a);
     95         Insert(Tree,i,a);
     96     }
     97     for( i = 0; i < q; i ++ )
     98     {
     99         scanf("%s",cmd);
    100         if ( cmd[0] == 'C' )
    101         {
    102             scanf("%d%d%d",&a,&b,&c);
    103             Add( Tree,a,b,c);
    104         }
    105         else
    106         {
    107             scanf("%d%d",&a,&b);
    108             printf("%I64d
    ",QuerynSum(Tree,a,b));
    109         }
    110     }
    111     return 0;
    112 }
    View Code
  • 相关阅读:
    修改input:file样式
    gruntjs
    C#Lambda表达式
    C#委托与事件讲解(一)
    Linq的语法以及常用的扩展方法
    正则表达式就这么简单!
    C#参考之sealed密封类(转)
    Python学习(六)
    Python学习(一)
    自动化测试之JDBC连接、分布式负载
  • 原文地址:https://www.cnblogs.com/zero-zz/p/4811331.html
Copyright © 2011-2022 走看看