Given a non-negative integer num
, repeatedly add all its digits until the result has only one digit.
For example:
Given num = 38
, the process is like: 3 + 8 = 11
, 1 + 1 = 2
. Since 2
has only one digit, return it.
Follow up:
Could you do it without any loop/recursion in O(1) runtime?
Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
题意:给定一个非负整数,将其每位上的数字加起来,重复此操作,直到相加的和为一位数
follow up:要求时间复杂度为O(1),不使用循环或递归
方法一:直接计算。但要使用循环。时间复杂度高
public int addDigits(int num) { int sum = 0; while(num / 10 != 0){ while(num % 10 != 0 || num != 0){ sum += num % 10; num /= 10; } num = sum; sum = 0; } return num; }
方法二:参考:https://www.cnblogs.com/grandyang/p/4741028.html
可看出:c3列每个数相加,变成对应的c2列;而c2列的每个数相加,又变成对应的c1列。
可得出规律:每9个数为一个循环,所求的sum为num除以9取余,即num % 9。但是存在一个问题,即像9、18、27这些除以9余数为0.
因此为了对所有数都适用,改为:(num - 1) % 9 + 1
public int addDigits(int num){ return (num - 1) % 9 + 1; }