Catalan
Stirling
容斥
- [UVA10325]The Lottery(状压+容斥)
- [UVA11806]Cheerleaders
- [SP4191]MSKYCODE - Sky Code
- [CQOI2015]选数(容斥+递推)
- [SCOI2010]幸运数字
莫比乌斯反演与筛法
[g(n)=sum_{d|n}f(d)$$ $$f(n)=sum_{d|n}{mu(d)g(frac{n}{d})}
]
blogs:
题目:
- [HDU1695]GCD + [HAOI2011]Problem b + [POI2007]ZAP-Queries
三倍经验 - [SDOI2015]约数个数和
- [luogu1829]Crash的数字表格
- [luogu2257]YY的GCD
- [51nod]莫比乌斯函数之和
- [BZOJ4805]欧拉函数求和
- [SP4168]SQFREE - Square-free integers
- [BZOJ2440][中山市选2011]完全平方数
- [SDOI2014]数表(莫比乌斯反演+树状数组)
- [luogu3768]简单的数学题
- [BZOJ3309]DZY Loves Math
- P4240 毒瘤之神的考验(真的毒瘤的预处理啊orz)
- [NOI2016]循环之美
- [SDOI2017]数字表格(关于幂的莫比乌斯反演orz)
二项式反演
[f(n)=sum_{k=p}^n (egin{matrix} n \ k end{matrix})g(k)
]
[g(n)=sum_{k=p}^n(-1)^{n-k}(egin{matrix} n \ k end{matrix})f(k)
]
中国剩余定理
[egin{Bmatrix}
x equiv c_1 (mod; m_1)\
x equiv c_2 (mod; m_2)\
cdots\
x equiv c_n (mod; m_n)
end{Bmatrix}
]
其中((m_i, m_j)==1, i
ot= j)
令(M=prod_{i=1}^nm_i),
则(x=(sum_{i=1}^nc_i*frac{M}{m_i}*inv(frac{M}{m_i}, m_i))mod;M)
[egin{Bmatrix}
x equiv c_1 (mod; m_1)\
x equiv c_2 (mod; m_2)\
cdots\
x equiv c_n (mod; m_n)
end{Bmatrix}
]
对于两个方程
[x equiv c_1 (mod; m_1)\
x equiv c_2 (mod; m_2)]
合并为一个,有解条件为((m_1, m_2)|(c_2-c_1))
[d=(m_1, m_2), m=frac{m_1m_2}{d}\
c=(inv(frac{m_1}{d}, frac{m_2}{d})*frac{c_2-c_1}{d})\% (frac{m_2}{d})*m_1+c_1]
最终(x=c\%m)
- [luogu4720]【模板】扩展卢卡斯
求(C_n^m%p)
唯一分解(p=prod_{i=1}^qp_i^{k_i})
[egin{Bmatrix}
x equiv C_n^m \%p_1^{k_1} (mod; p_1^{k_1})\
x equiv C_n^m \%p_2^{k_2} (mod; p_2^{k_2})\
cdots\
x equiv C_n^m \%p_q^{k_q} (mod; p_q^{k_q})
end{Bmatrix}
]
则(x)即为答案
公式:
-
[g(n)=sum_{d|n}f(d)$$ $$f(n)=sum_{d|n}{mu(d)g(frac{n}{d})} ]
-
[f(n)=sum_{k=p}^n (egin{matrix} n \ k end{matrix})g(k) ]
[g(n)=sum_{k=p}^n(-1)^{n-k}(egin{matrix} n \ k end{matrix})f(k)
]
-
[g(n)=sum_{n|d}{f(d)[d leq m]}$$ $$f(n)=sum_{n|d}{mu(frac{d}{n})g(d)[d leq m]} ]
- 如果(f(n))是积性函数,且((x, y) = 1),则有$$f(xy)=f(x)f(y)$$
-
[sum_{i=1}^{n}{i[(i, n) == 1]}= frac{varphi(n)*n}2 ]
(用到结论:(if (i, n) == 1, then (n-i, n) = 1))
4. $$(id*mu)(i)=varphi(i)$$
[(varphi*I)(i)=id(i)
]
[(mu*I)(i)=e(i)
]
-
[[n == 1]=sum_{d|n}{mu(d)} ]
-
[n=sum_{d|n}{varphi(d)} ]
-
[sum_{i=1}^{n}{sum_{j=1}^{m}ij}=frac{n^2(n+1)^2}{4} ]
- 除数函数 $$sigma_k(n)=sum_{d|n}{d^k}$$
约数个数函数 $$ au(n)=sigma_0(n)=sum_{d|n}1$$
约数和函数$$sigma(n)=sigma_1(n)=sum_{d|n}d$$ -
[sum_{i=1}^ni=frac{n(n+1)}{2} ]
[sum_{i=1}^ni^2=frac{(n+1)(2n+1)n}{6}
]
[sum_{i=1}^ni^3=frac{n^2(n+1)^2}{4}
]
-
[varphi(ij)=frac{varphi(i)varphi(j)(i,j)}{varphi((i,j))} ]
-
[[f(x) == 1] = e(f(x))=(mu*I)(f(x))$$(常用于引进$mu$以进行莫比乌斯反演,如[NOI2016]循环之美) ]
-
[d(ij)=sum_{x|i}sum_{y|j}[gcd(x, y) == 1] ]
-
[]
x equiv c_1 (mod; m_1)
x equiv c_2 (mod; m_2)
cdots
x equiv c_n (mod; m_n)
end{Bmatrix}
[其中$(m_i, m_j)==1, i
ot= j$
令$M=prod_{i=1}^nm_i$,
则$x=(sum_{i=1}^nc_i*frac{M}{m_i}*inv(frac{M}{m_i}, m_i))mod;M$
15. ]
egin{Bmatrix}
x equiv c_1 (mod; m_1)
x equiv c_2 (mod; m_2)
cdots
x equiv c_n (mod; m_n)
end{Bmatrix}
[对于两个方程
$$x equiv c_1 (mod; m_1)\
x equiv c_2 (mod; m_2)]
合并为一个,有解条件为((m_1, m_2)|(c_2-c_1))
[d=(m_1, m_2), m=frac{m_1m_2}{d}\
c=(inv(frac{m_1}{d}, frac{m_2}{d})*frac{c_2-c_1}{d})\% (frac{m_2}{d})*m_1+c_1]
最终(x=c\%m)
16. 求(C_n^m%p)
唯一分解(p=prod_{i=1}^qp_i^{k_i})
[egin{Bmatrix}
x equiv C_n^m \%p_1^{k_1} (mod; p_1^{k_1})\
x equiv C_n^m \%p_2^{k_2} (mod; p_2^{k_2})\
cdots\
x equiv C_n^m \%p_q^{k_q} (mod; p_q^{k_q})
end{Bmatrix}
]
则(x)即为答案