[f[i][j]=max_{j-L[i]leq kleq S[i]-1}{f[i-1][k]+P[i]*(j-k)}
]
变形一下$$f[i][j]=P[i]j+max_{j-L[i]leq kleq S[i]-1}{f[i-1][k]+P[i]k}$$
当(k_1 < k_2)且(f[i-1][k_1]+P[i]*k_1 leq f[i-1][k_2]+P[i]*k_2) 时,显然(k_2)比(k_1)更优且取到(k_1)时一定取得到(k_2),所以可以用单调队列优化,时间复杂度(O(NM))
#define val(x, now, i) f[i-1][x]-P[now]*x
bool cmp(int x, int y) {return S[x] < S[y];}
void solve(){
n=read(), m=read();
for(int i=1; i <= m; i++) L[i]=read(), P[i]=read(), S[i]=read(), pk[i]=i;
sort(pk+1, pk+1+m, cmp);
for(int i=1; i <= m; i++){
l=1, r=0; int now=pk[i];
for(int j=max(S[now]-L[now], 0); j < S[now]; j++){
while(l <= r && val(q[r], now, i) <= val(j, now, i)) r--;
q[++r]=j;
}
for(int j=1; j <= n; j++){
f[i][j]=max(f[i-1][j], f[i][j-1]);
if(j >= S[now]){
while(l <= r && q[l] < j-L[now]) l++;
if(l <= r) f[i][j]=max(f[i][j], val(q[l], now, i)+P[now]*j);
}
}
}
printf("%d", f[m][n]);
}
3.[BZOJ1233][Usaco2009Open]干草堆tower
4.[SCOI2010]股票交易(我居然自己推出来了一个(DP),旋转开心)(转移方程打不出来,放弃了)
int q[Maxn], l, r;
void solve(){
n=read(), mp=read(), W=read();
for(int i=1; i <= n; i++) ap[i]=read(), bp[i]=read(), as[i]=read(), bs[i]=read();
memset(f, -inf, sizeof(f)); f[0][0]=0;
for(int i=1; i <= n; i++){
l=1, r=0; int pre=max(0, i-W-1); q[++r]=0; f[i][0]=f[i-1][0];
for(int j=1; j <= mp; j++){
f[i][j]=f[i-1][j]; if(j <= as[i]) f[i][j]=max(f[i][j], f[pre][0]-ap[i]*j*1ll);
while(l <= r && q[l]+as[i] < j) l++;
if(l <= r) f[i][j]=max(f[i][j], f[pre][q[l]]+(q[l]-j)*ap[i]);
while(l <= r && f[pre][q[r]]+ap[i]*q[r] <= f[pre][j]+ap[i]*j) r--;
q[++r]=j;
} l=1, r=0;
for(int j=mp; ~j; j--){
while(l <= r && q[l]-bs[i] > j) l++;
if(l <= r) f[i][j]=max(f[i][j], f[pre][q[l]]+(q[l]-j)*bp[i]);
while(l <= r && f[pre][q[r]]+bp[i]*q[r] <= f[pre][j]+bp[i]*j) r--;
q[++r]=j;
}
}
ll ans=0; for(int i=0; i <= mp; i++) ans=max(f[n][i], ans); printf("%lld", ans);
}
6.[NOIP2017普及]跳房子
(这题放普及组难了点, 二分+单调队列)
[f[i]=max_{x[i]-mxle x[k]le x[i]-mn}{f[k]}+s[i]
]
重点在于进队的时间
bool check(int mid){
ll ans=0; int l=1, r=0, now=0, mx=d+mid, mn=max(1, d-mid);
memset(f, -inf, sizeof(f)); f[0]=0;
for(int i=1; i <= n; i++){
while(x[i]-x[now] >= mn) {while(l <= r && f[q[r]] <= f[now]) r--; q[++r]=now++;}
while(l <= r && x[q[l]]+mx < x[i]) l++;
if(l <= r) f[i]=max(f[q[l]]+val[i], f[i]); if(f[i] >= k) return 1;
}
return 0;
}
7.[[NOI2005]瑰丽华尔兹] (https://www.luogu.org/problemnew/show/P2254)
[dp[i][x][y]=max_{|tx-x|+|ty-y| le T}{dp[i-1][tx][ty]+|tx-x|+|ty-y|}
]
分四种情况后就非常好讨论单调性了(绝对值全去掉了)
int q[Maxn], pos[Maxn], l, r;
void push(int now, int pre){
if(pre == -inf) return ;
while(pre-now >= q[r] && l <= r) r--;
q[++r]=pre-now; pos[r]=now;
}
void cal(int kd, int x, int y, int d, int T){
l=1, r=0; int now=1;
while(x <= n && y <= m && x >= 1 && y >= 1){
if(map[x][y] == 'x') l=1, r=0; else push(now, f[kd-1][x][y]);
while(l <= r && now-pos[l] > T) l++;
if(l <= r) f[kd][x][y]=q[l]+now; else f[kd][x][y]=-inf;
ans=max(ans, f[kd][x][y]); x+=nx[d], y+=ny[d]; now++;
}
}