zoukankan      html  css  js  c++  java
  • 二叉搜索树

    参考链接:https://www.cnblogs.com/skywang12345/p/3576328.html

     

    定义:二叉查找树(Binary Search Tree),又被称为二叉搜索树。设x为二叉查找树中的一个结点,x节点包含关键字key,节点x的key值记为key[x]。如果y是x的左子树中的一个结点,则key[y] <= key[x];如果y是x的右子树的一个结点,则key[y] >= key[x]。

    在二叉查找树中:
    (01) 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
    (02) 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
    (03) 任意节点的左、右子树也分别为二叉查找树。
    (04) 没有键值相等的节点(no duplicate nodes)。

    代码如下:

    1. 节点定义

    1.1 节点定义

    typedef int Type;
    
    typedef struct BSTreeNode{
        Type   key;                    // 关键字(键值)
        struct BSTreeNode *left;    // 左孩子
        struct BSTreeNode *right;    // 右孩子
        struct BSTreeNode *parent;    // 父结点
    }Node, *BSTree;

    1.2 创建节点

    创建节点的代码

    static Node* create_bstree_node(Type key, Node *parent, Node *left, Node* right)
    {
        Node* p;
    
        if ((p = (Node *)malloc(sizeof(Node))) == NULL)
            return NULL;
        p->key = key;
        p->left = left;
        p->right = right;
        p->parent = parent;
    
        return p;
    }

    2 遍历

    2.1 前序遍历

    void preorder_bstree(BSTree tree)
    {
        if(tree != NULL)
        {
            printf("%d ", tree->key);
            preorder_bstree(tree->left);
            preorder_bstree(tree->right);
        }
    }

    2.2 中序遍历

    void inorder_bstree(BSTree tree)
    {
        if(tree != NULL)
        {
            inorder_bstree(tree->left);
            printf("%d ", tree->key);
            inorder_bstree(tree->right);
        }
    }

    2.3 后序遍历

    void postorder_bstree(BSTree tree)
    {
        if(tree != NULL)
        {
            postorder_bstree(tree->left);
            postorder_bstree(tree->right);
            printf("%d ", tree->key);
        }
    }

    3. 查找

    递归版本的代码:

    Node* bstree_search(BSTree x, Type key)
    {
        if (x==NULL || x->key==key)
            return x;
    
        if (key < x->key)
            return bstree_search(x->left, key);
        else
            return bstree_search(x->right, key);
    }

    非递归版本的代码:

    Node* iterative_bstree_search(BSTree x, Type key)
    {
        while ((x!=NULL) && (x->key!=key))
        {
            if (key < x->key)
                x = x->left;
            else
                x = x->right;
        }
    
        return x;
    }

    4. 最大值和最小值

    查找最大值的代码:

    Node* bstree_maximum(BSTree tree)
    {
        if (tree == NULL)
            return NULL;
    
        while(tree->right != NULL)
            tree = tree->right;
        return tree;
    }

    查找最小值的代码

    Node* bstree_minimum(BSTree tree)
    {
        if (tree == NULL)
            return NULL;
    
        while(tree->left != NULL)
            tree = tree->left;
        return tree;
    }

    5. 前驱和后继:

    什么是后继和前驱,如果对数的节点的关键字排序:
    key1<=key2<=......<=keyn−3<=keyn−2<=keyn−1<=keynkey1<=key2<=......<=keyn−3<=keyn−2<=keyn−1<=keyn,那么keyn−3keyn−3和keyn−1keyn−1就是keyn−2keyn−2的前驱和后继;

    查找前驱节点的代码:

    Node* bstree_predecessor(Node *x)
    {
        // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
        if (x->left != NULL)
            return bstree_maximum(x->left);
    
        // 如果x没有左孩子。则x有以下两种可能:
        // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
        // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
        Node* y = x->parent;
        while ((y!=NULL) && (x==y->left))
        {
            x = y;
            y = y->parent;
        }
    
        return y;
    }

    查找后继节点的代码:

    Node* bstree_successor(Node *x)
    {
        // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
        if (x->right != NULL)
            return bstree_minimum(x->right);
    
        // 如果x没有右孩子。则x有以下两种可能:
        // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
        // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
        Node* y = x->parent;
        while ((y!=NULL) && (x==y->right))
        {
            x = y;
            y = y->parent;
        }
    
        return y;
    }
  • 相关阅读:
    第十二次作业
    Beta 冲刺(7/7)
    Beta 冲刺(6/7)
    Beta 冲刺(5/7)
    Beta 冲刺(4/7)
    Beta 冲刺(3/7)
    Beta 冲刺(2/7)
    第十次作业
    Beta 冲刺(1/7)
    福大软工 · 最终作业
  • 原文地址:https://www.cnblogs.com/zf-blog/p/9875488.html
Copyright © 2011-2022 走看看