zoukankan      html  css  js  c++  java
  • Numpy 基础学习

    numpy.array()

    功能:创建一个数据

    vector = numpy.array([1,2,3,4])
    matrix = numpy.array([1,2,3,4],[11,12,13,14])
    
    

    numpy.shape

    功能:查看有多少个对象在数组中

    print(vector.shape)
    

    print(matrix.shape)
    

    numpy.genfromtxt()

    功能:Load data from a text file(从txt加载数据)

    文件内容示例:

    ear,WHO region,Country,Beverage Types,Display Value
    1986,Western Pacific,Viet Nam,Wine,0
    1986,Americas,Uruguay,Other,0.5
    1985,Africa,Cte d'Ivoire,Wine,1.62
    ...
    1986,Americas,Colombia,Beer,4.27
    1987,Americas,Saint Kitts and Nevis,Beer,1.98
    1987,Americas,Guatemala,Other,0
    1987,Africa,Mauritius,Wine,0.13
    1985,Africa,Angola,Spirits,0.39
    1986,Americas,Antigua and Barbuda,Spirits,1.55
    
    

    读取代码

    world_alcohol = numpy.genfromtxt('world_alcohol.txt',delimiter=',',dtype=str)
    

    打印矩阵

    [['Year' 'WHO region' 'Country' 'Beverage Types' 'Display Value']
     ['1986' 'Western Pacific' 'Viet Nam' 'Wine' '0']
     ['1986' 'Americas' 'Uruguay' 'Other' '0.5']
     ...
     ['1987' 'Africa' 'Malawi' 'Other' '0.75']
     ['1989' 'Americas' 'Bahamas' 'Wine' '1.5']
     ['1985' 'Africa' 'Malawi' 'Spirits' '0.31']]
    

    help(numpy.genfromtxt)

    功能:查看该方法如何使用

    In>> help(numpy.genfromtxt)
    Out>> 
    

    个人更推荐直接查看该方法的定义的方式来查看方法如何使用

    切片操作

    1.取world_alcohol的所有年份

    world_alcohol[:,:1]
    

    :代表所有,:1代表第一列,意义就是取所有行的第一列

    2.取world_alcohol的第三列

    world_alcohol[:,2:3]
    

    运算 判断

    先定一个矩阵

    matrix = numpy.array([[1,2,3],[1,2,4],[2,2,3]])
    

    判断矩阵中是否存在某个元素

    matrix[:,]==2
    


    返回一个数组,Flase为不匹配,True为匹配

    用匹配信息进行查找
    示例:查找第一列为2 的行 所在第三列的值

    qe = matrix[:,0] == 2
    # array([False, False,  True])
    
    matrix[qe,2]
    # array([3])
    

    运算 与

    vector = numpy.array([1,2,3,4])
    print((vector == 1) & (vector ==2))
    
    

    print((vector == 1) & (vector >0))
    # out >> [ True False False False]
    

    运算 或

    vector = numpy.array([1,2,3,4])
    print((vector == 1) | (vector ==2))
    # out >> [ True  True False False]
    

    类型转换

    使用astype来进行类型转换

    vector = numpy.array(['1','2','3'])
    print(vector.dtype)
    ## <U1
    
    vector = vector.astype(int)
    print(vector.dtype)
    ## int64
    

    矩阵转换

    >>> vector = numpy.arange(15)
    >>> print(vector)
    [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]
    >>> matrix = vector.reshape(3,5)
    >>> print(matrix)
    [[ 0  1  2  3  4]
     [ 5  6  7  8  9]
     [10 11 12 13 14]]
    >>> matrix
    array([[ 0,  1,  2,  3,  4],
           [ 5,  6,  7,  8,  9],
           [10, 11, 12, 13, 14]])
    

    ndim 维度

    >>> matrix.ndim
    2
    

    matrix来自上面的矩阵转换

    初始化一个矩阵

    >>> numpy.zeros((3,4))
    array([[0., 0., 0., 0.],
           [0., 0., 0., 0.],
           [0., 0., 0., 0.]])
    

    随机

    >>> numpy.random.random((2,3))
    array([[0.92741381, 0.60763819, 0.62092669],
           [0.0685093 , 0.31973933, 0.59478389]])
    

    linspace 指定范围和数量的初始化

    >>> numpy.linspace(1,2*numpy.pi,100)
    array([1.        , 1.05336551, 1.10673102, 1.16009652, 1.21346203,
           1.26682754, 1.32019305, 1.37355856, 1.42692407, 1.48028957,
           1.53365508, 1.58702059, 1.6403861 , 1.69375161, 1.74711711,
           1.80048262, 1.85384813, 1.90721364, 1.96057915, 2.01394465,
           2.06731016, 2.12067567, 2.17404118, 2.22740669, 2.2807722 ,
           2.3341377 , 2.38750321, 2.44086872, 2.49423423, 2.54759974,
           2.60096524, 2.65433075, 2.70769626, 2.76106177, 2.81442728,
           2.86779279, 2.92115829, 2.9745238 , 3.02788931, 3.08125482,
           3.13462033, 3.18798583, 3.24135134, 3.29471685, 3.34808236,
           3.40144787, 3.45481338, 3.50817888, 3.56154439, 3.6149099 ,
           3.66827541, 3.72164092, 3.77500642, 3.82837193, 3.88173744,
           3.93510295, 3.98846846, 4.04183396, 4.09519947, 4.14856498,
           4.20193049, 4.255296  , 4.30866151, 4.36202701, 4.41539252,
           4.46875803, 4.52212354, 4.57548905, 4.62885455, 4.68222006,
           4.73558557, 4.78895108, 4.84231659, 4.8956821 , 4.9490476 ,
           5.00241311, 5.05577862, 5.10914413, 5.16250964, 5.21587514,
           5.26924065, 5.32260616, 5.37597167, 5.42933718, 5.48270268,
           5.53606819, 5.5894337 , 5.64279921, 5.69616472, 5.74953023,
           5.80289573, 5.85626124, 5.90962675, 5.96299226, 6.01635777,
           6.06972327, 6.12308878, 6.17645429, 6.2298198 , 6.28318531])
    

    取整

    >>> matrix = numpy.random.random((2,3))
    >>> matrix
    array([[0.80081883, 0.85121955, 0.13076995],
           [0.93531681, 0.63438252, 0.72251243]])
    >>> numpy.floor(matrix)
    array([[0., 0., 0.],
           [0., 0., 0.]])
    

    拼接

    hstack

    >>> a = numpy.random.random((2,3))
    >>> b = numpy.random.random((2,3))
    >>> a
    array([[0.95498357, 0.18999871, 0.66418543],
           [0.57704126, 0.65051646, 0.29100003]])
    >>> b
    array([[0.1027083 , 0.02873905, 0.91481418],
           [0.91912233, 0.24024705, 0.51269805]])
    >>> numpy.hstack((a,b))
    array([[0.95498357, 0.18999871, 0.66418543, 0.1027083 , 0.02873905,
            0.91481418],
           [0.57704126, 0.65051646, 0.29100003, 0.91912233, 0.24024705,
            0.51269805]])
    

    vstack

    >>> a = numpy.random.random((2,3))
    >>> b = numpy.random.random((2,3))
    >>> a
    array([[0.95498357, 0.18999871, 0.66418543],
           [0.57704126, 0.65051646, 0.29100003]])
    >>> b
    array([[0.1027083 , 0.02873905, 0.91481418],
           [0.91912233, 0.24024705, 0.51269805]])
    >>> numpy.vstack((a,b))
    array([[0.95498357, 0.18999871, 0.66418543],
           [0.57704126, 0.65051646, 0.29100003],
           [0.1027083 , 0.02873905, 0.91481418],
           [0.91912233, 0.24024705, 0.51269805]])
    

    切分

    hsplit

    行切割

    >>> c = numpy.floor(10*numpy.random.random((2,12)))
    >>> c
    array([[3., 7., 9., 1., 4., 3., 3., 9., 5., 4., 9., 9.],
           [3., 9., 8., 6., 7., 5., 4., 8., 1., 4., 8., 7.]])
           
    >>> numpy.hsplit(c,3) #平均切割为3份
    [array([[3., 7., 9., 1.],
           [3., 9., 8., 6.]]), 
    array([[4., 3., 3., 9.],
           [7., 5., 4., 8.]]), 
    array([[5., 4., 9., 9.],
           [1., 4., 8., 7.]])]
           
    >>> numpy.hsplit(c,(3,4)) #指定位置切割
    [array([[3., 7., 9.],
           [3., 9., 8.]]), array([[1.],
           [6.]]), array([[4., 3., 3., 9., 5., 4., 9., 9.],
           [7., 5., 4., 8., 1., 4., 8., 7.]])]
    

    vsplit

    列切割

    >>> d = numpy.floor(10*numpy.random.random((3,12)))
    array([[1., 3., 4., 6., 6., 1., 6., 7., 3., 2., 8., 0.],
           [7., 0., 0., 1., 5., 2., 6., 8., 0., 3., 3., 4.],
           [3., 8., 7., 0., 7., 9., 1., 6., 7., 4., 6., 1.]])
           
    >>> numpy.vsplit(d,3) # 平均切割为3份
    [array([[1., 3., 4., 6., 6., 1., 6., 7., 3., 2., 8., 0.]]), 
    array([[7., 0., 0., 1., 5., 2., 6., 8., 0., 3., 3., 4.]]), 
    array([[3., 8., 7., 0., 7., 9., 1., 6., 7., 4., 6., 1.]])]
    

    深拷贝和浅拷贝

    赋值

    完全相同的对象

    >>> a = numpy.arange(12)
    >>> a
    array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
    >>> b= a
    >>> b
    array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
    >>> print(b is a)
    True
    

    浅拷贝

    对象不同,但引用的值相同

    >>> c = a.view()
    >>> print(c is a)
    False
    >>> c.shape = (2,6)
    >>> a.shape
    (12,)
    >>> a[0]=1
    >>> a
    array([ 1,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
    >>> c
    array([[ 1,  1,  2,  3,  4,  5],
           [ 6,  7,  8,  9, 10, 11]])
    

    深拷贝

    完全不同的两个对象

    >>> d = a.copy()
    >>> d is a
    False
    >>> a
    array([ 1,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
    >>> d
    array([ 1,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
    >>> d.shape=(2,6)
    >>> d
    array([[ 1,  1,  2,  3,  4,  5],
           [ 6,  7,  8,  9, 10, 11]])
    >>> d[0,0]=0
    >>> d
    array([[ 0,  1,  2,  3,  4,  5],
    
  • 相关阅读:
    使用Twitter异常检测框架遇到的坑
    Python从入门到精通
    Windows中几个内存相当的指标
    Windows应用程序进程级别统一监控实践
    基于时序数据的微内核预警引擎架构设计
    Flink1.4.0连接Kafka0.10.2时遇到的问题
    wait和sleep的区别
    JVM几种垃圾回收器介绍
    二叉树的非递归遍历
    段页式内存管理
  • 原文地址:https://www.cnblogs.com/zfcode/p/Numpy-ji-chu-xue-xi.html
Copyright © 2011-2022 走看看