http://acm.hdu.edu.cn/showproblem.php?pid=5015
由于是个二维的递推式,当时没有想到能够这样构造矩阵。从列上看,当前这一列都是由前一列递推得到。依据这一点来构造矩阵。令b[i]代表第i列,是一个(n+2)*1的矩阵,即b[1] = [1,233......],之所以在加了两行,是要从前一个矩阵b[i-1]得到b[i]中的第二个数2333...,再构造一个转换矩阵a,它是一个(n+2)*(n+2)的矩阵,那么a^(m-1) * b就是第m列。
/* a矩阵: 1 0 0 0 0... 3 10 0 0 0... 3 10 1 0 0... 3 10 1 1 0... 3 10 1 1 1... .. b矩阵:第1列 */ #include <stdio.h> #include <iostream> #include <map> #include <set> #include <list> #include <stack> #include <vector> #include <math.h> #include <string.h> #include <queue> #include <string> #include <stdlib.h> #include <algorithm> #define LL __int64 //#define LL long long #define eps 1e-9 #define PI acos(-1.0) using namespace std; const int INF = 0x3f3f3f3f; const int mod = 10000007; struct matrix { LL mat[15][15]; void init() { memset(mat,0,sizeof(mat)); for(int i = 0; i < 15; i++) { mat[i][i] = 1; } } }a,b,res; int n,m; matrix mul(matrix a, matrix b) { matrix ans; memset(ans.mat,0,sizeof(ans.mat)); for(int i = 0; i < n+2; i++) { for(int k = 0; k < n+2; k++) { if(a.mat[i][k] == 0) continue; for(int j = 0; j < n+2; j++) { ans.mat[i][j] += (a.mat[i][k] * b.mat[k][j])%mod; ans.mat[i][j] %= mod; } } } return ans; } matrix pow(matrix a, int n) { matrix ans; ans.init(); while(n) { if(n&1) ans = mul(ans,a); n >>= 1; a = mul(a,a); } return ans; } int main() { int x; while(~scanf("%d %d",&n,&m)) { memset(b.mat,0,sizeof(b.mat)); b.mat[0][0] = 1; b.mat[1][0] = 233; for(int i = 2; i < n+2; i++) { scanf("%d",&x); b.mat[i][0] = (b.mat[i-1][0] + x%mod)%mod; } memset(a.mat,0,sizeof(a.mat)); a.mat[0][0] = 1; for(int i = 1; i < n+2; i++) { a.mat[i][0] = 3; a.mat[i][1] = 10; for(int j = 2; j <= i; j++) a.mat[i][j] = 1; } res = pow(a,m-1); LL anw = 0; for(int i = 0; i < n+2; i++) { anw += (res.mat[n+1][i] * b.mat[i][0])%mod; anw %= mod; } printf("%I64d ",anw); } return 0; }