题意 把1到n这n个数以1为首位围成一圈 输出全部满足随意相邻两数之和均为素数的全部排列
直接枚举排列看是否符合肯定会超时的 n最大为16 利用回溯法 边生成边推断 就要快非常多了
#include<cstdio> using namespace std; const int N = 50; int p[N], vis[N], a[N], n; int isPrime(int k) { for(int i = 2; i * i <= k; ++i) if(k % i == 0) return 0; return 1; } void dfs(int cur) { if(cur == n && p[a[n - 1] + 1]) { printf("%d", a[0]); for(int i = 1; i < n; ++i) printf(" %d", a[i]); printf(" "); } for(int i = 2; cur < n && i <= n; ++i) { if(!vis[i] && p[a[cur - 1] + i]) { vis[i] = a[cur] = i; dfs(cur + 1); vis[i] = 0; } } } int main() { int cas = 0; a[0] = 1; for(int i = 2; i < N; ++i) p[i] = isPrime(i); while(~scanf("%d", &n)) { if(cas) printf(" "); printf("Case %d: ", ++cas); dfs(1); } return 0; }
Prime Ring Problem
Prime Ring Problem |
A ring is composed of n (even number) circles as shown in diagram. Put natural numbers into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n <= 16)Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements.
You are to write a program that completes above process.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2