zoukankan      html  css  js  c++  java
  • POJ 2112 Optimal Milking (二分 + floyd + 网络流)

    POJ 2112 Optimal Milking 


    题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C≤200)头奶牛,在奶牛和挤奶器之间有一组不同长度的路。K个挤奶器的位置用1~K的编号标明,奶牛的位置用K+1~K+C 的编号标明。每台挤奶器每天最多能为M(1≤M≤15)头奶牛挤奶。寻找一个方案,安排每头奶牛到某个挤奶器挤奶,并使得C 头奶牛须要走的全部路程中的最大路程最小。每一个測试数据中至少有一个安排方案。每条奶牛到挤奶器有多条路。

    思路:先用Floyd 算法求出能达到的随意两点之间的最短路径,然后二分最大距离的最小值,每次用二分的值求最大流。
    在求最大流时构图:建立一个源点,每一个点到挤奶器连一条流量为m的边。建立一个汇点,每头奶牛到汇点连一条流量为1的边。挤奶器与奶牛之间的距离小于等于mid则连边,流量为1。最后求最大流是否为c就可以。

    代码:
    /*
    ID: wuqi9395@126.com
    PROG:
    LANG: C++
    */
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<cmath>
    #include<cstdio>
    #include<vector>
    #include<string>
    #include<fstream>
    #include<cstring>
    #include<ctype.h>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define INF (1<<30)
    #define PI acos(-1.0)
    #define mem(a, b) memset(a, b, sizeof(a))
    #define rep(i, a, n) for (int i = a; i < n; i++)
    #define per(i, a, n) for (int i = n - 1; i >= a; i--)
    #define eps 1e-6
    #define debug puts("===============")
    #define pb push_back
    //#define mp make_pair
    #define all(x) (x).begin(),(x).end()
    #define fi first
    #define se second
    #define SZ(x) ((int)(x).size())
    #define POSIN(x,y) (0 <= (x) && (x) < n && 0 <= (y) && (y) < m)
    typedef long long ll;
    typedef unsigned long long ULL;
    const int maxn = 250;
    const int maxm = 100000;
    int k, c, m;
    int mp[maxn][maxn];
    struct node {
        int v;    // vertex
        int cap;    // capacity
        int flow;   // current flow in this arc
        int nxt;
    } e[maxm * 2];
    int g[maxn], cnt;
    int st, ed, n;
    void add(int u, int v, int c) {
        e[++cnt].v = v;
        e[cnt].cap = c;
        e[cnt].flow = 0;
        e[cnt].nxt = g[u];
        g[u] = cnt;
    
        e[++cnt].v = u;
        e[cnt].cap = 0;
        e[cnt].flow = 0;
        e[cnt].nxt = g[v];
        g[v] = cnt;
    }
    
    void init(int mid) {
        mem(g, 0);
        cnt = 1;
        st = 0, ed = k + c + 1;
        n = k + c;
        for (int i = 1; i <= k; i++) add(st, i, m);
        for (int i = k + 1; i <= n; i++) {
            for (int j = 1; j <= k; j++) if (mp[i][j] <= mid) add(j, i, 1);
            add(i, ed, 1);
        }
        n += 3;
    }
    
    int dist[maxn], numbs[maxn], q[maxn];
    void rev_bfs() {
        int font = 0, rear = 1;
        for (int i = 0; i <= n; i++) { //n为总点数
            dist[i] = maxn;
            numbs[i] = 0;
        }
        q[font] = ed;
        dist[ed] = 0;
        numbs[0] = 1;
        while(font != rear) {
            int u = q[font++];
            for (int i = g[u]; i; i = e[i].nxt) {
                if (e[i ^ 1].cap == 0 || dist[e[i].v] < maxn) continue;
                dist[e[i].v] = dist[u] + 1;
                ++numbs[dist[e[i].v]];
                q[rear++] = e[i].v;
            }
        }
    }
    int maxflow() {
        rev_bfs();
        int u, totalflow = 0;
        int curg[maxn], revpath[maxn];
        for(int i = 0; i <= n; ++i) curg[i] = g[i];
        u = st;
        while(dist[st] < n) {
            if(u == ed) {   // find an augmenting path
                int augflow = INF;
                for(int i = st; i != ed; i = e[curg[i]].v)
                    augflow = min(augflow, e[curg[i]].cap);
                for(int i = st; i != ed; i = e[curg[i]].v) {
                    e[curg[i]].cap -= augflow;
                    e[curg[i] ^ 1].cap += augflow;
                    e[curg[i]].flow += augflow;
                    e[curg[i] ^ 1].flow -= augflow;
                }
                totalflow += augflow;
                u = st;
            }
            int i;
            for(i = curg[u]; i; i = e[i].nxt)
                if(e[i].cap > 0 && dist[u] == dist[e[i].v] + 1) break;
            if(i) {   // find an admissible arc, then Advance
                curg[u] = i;
                revpath[e[i].v] = i ^ 1;
                u = e[i].v;
            } else {    // no admissible arc, then relabel this vertex
                if(0 == (--numbs[dist[u]])) break;    // GAP cut, Important!
                curg[u] = g[u];
                int mindist = n;
                for(int j = g[u]; j; j = e[j].nxt)
                    if(e[j].cap > 0) mindist = min(mindist, dist[e[j].v]);
                dist[u] = mindist + 1;
                ++numbs[dist[u]];
                if(u != st)
                    u = e[revpath[u]].v;    // Backtrack
            }
        }
        return totalflow;
    }
    void get() {
        n = k + c;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                scanf("%d", mp[i] + j);
                if (mp[i][j] == 0 && i != j) mp[i][j] = INF;
            }
        }
    }
    void floyd(int n, int mp[][maxn]) {
        for (int k = 1; k <= n; k++) {
            for (int i = 1; i <= n; i++) if (mp[i][k] != INF) {
                for (int j = 1; j <= n; j++) mp[i][j] = min(mp[i][j], mp[i][k] + mp[k][j]);
            }
        }
    }
    int main () {
    
        while(scanf("%d%d%d", &k, &c, &m) != EOF) {
            get();
            floyd(n, mp);
            int l = 0, r = 10000, mid;
            while(l < r) {
                mid = (l + r) >> 1;
                init(mid);
                //debug;
                if (maxflow() >= c) r = mid;
                else l = mid + 1;
            }
            printf("%d
    ", r);
        }
        return 0;
    }
    


  • 相关阅读:
    Oracle数据库入门——体系结构
    基础知识——CentOS7操作系统的安装图文教程
    Oracle数据库入门——基础知识
    Windows Server 2008 R2 64位操作系统安装Oracle 11g 64位数据库,在客户终端上安装Oracle 11g 32位,才能安装P/L Sql Developer并配置
    2. Mysql数据库的入门知识
    1. Mysql数据库的安装
    Excel制作考勤管理
    常用函数公式及技巧搜集
    调试C++NPv2_Select_Reactor_Log_Server程序
    调试C++NPv2_Reactor_Log_Server程序
  • 原文地址:https://www.cnblogs.com/zfyouxi/p/4361859.html
Copyright © 2011-2022 走看看