zoukankan      html  css  js  c++  java
  • POJ1201-Intervals(差动限制)

    Intervals
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 20786   Accepted: 7866

    Description

    You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn. 
    Write a program that: 
    reads the number of intervals, their end points and integers c1, ..., cn from the standard input, 
    computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n, 
    writes the answer to the standard output. 

    Input

    The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.

    Output

    The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.

    Sample Input

    5
    3 7 3
    8 10 3
    6 8 1
    1 3 1
    10 11 1

    Sample Output

    6

    Source



    一道典型的差分约束:
    题目意思:
    给你m个区间。每一个区间至少要取c个数
    问最少取多少个数

    解法:
    用X(i) 表示前i个数中取了多少个数
    对于每一个区间的约束建立下列不等不等式:
    X(a) - X(b+1) <= -c

    除此之外还有补充另外的边
    X(i+1)-X(i)  <= 1
    要求的是
    X(sink) - X(src) >= d (d即为所求)
    X(src)-X(sink) <= -d
    求sink到src的最短路径
    SPFA搞定

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #include <string>
    using namespace std;
    const int maxn = 50000+10000;
    const int INF = 1e9;
    int n;
    int src,sink;
    bool inQue[maxn];
    int dist[maxn];
    queue<int>que;
    struct edge{
        int to,next,w;
        edge(int to,int next,int w):to(to),next(next),w(w){}
    };
    int head[maxn];
    vector<edge> e;
    
    void addedge(int from,int to,int w){
        e.push_back(edge(to,head[from],w));
        head[from] = e.size()-1;
    }
    void spfa(){
        for(int i = src; i <= sink; i++){
            inQue[i] = 0;
            dist[i] = INF;
        }
        inQue[sink] = 1;
        que.push(sink);
        dist[sink] = 0;
        while(!que.empty()){
            int u = que.front();
            que.pop();
            inQue[u] = 0;
            for(int i = head[u]; i != -1; i = e[i].next){
                if(dist[e[i].to] > dist[u]+e[i].w){
                    dist[e[i].to] = dist[u]+e[i].w;
                    if(!inQue[e[i].to]){
                        inQue[e[i].to] = 1;
                        que.push(e[i].to);
                    }
                }
            }
        }
    
    }
    int main(){
    
        int m;
        freopen("in","r",stdin);
        while(~scanf("%d",&m)){
            e.clear();
            src = maxn,sink = -1;
            memset(head,-1,sizeof head);
            while(m--){
                int a,b,c;
                scanf("%d%d%d",&a,&b,&c);
                ++b;
                src = min(src,a);
                sink = max(sink,b);
                addedge(b,a,-c);
            }
            for(int i = src; i < sink; i++){
                addedge(i+1,i,0);
                addedge(i,i+1,1);
            }
            spfa();
            cout<<-dist[src]<<endl;
    
        }
        return 0;
    }
    




    版权声明:本文博客原创文章,博客,未经同意,不得转载。

  • 相关阅读:
    layui 动态设置radio选中
    C# ling 查询 in 用法
    sql 去除小数点后面无效的0
    VUE 全局变量申明和取值
    SQL 逗号分隔将一行拆成多行
    devexpress 延长试用期 licenses.licx
    BugkuCTF-WEB4
    一招破解网页复制+网页上如何实现禁止复制粘贴
    JS的函数
    JS的数组
  • 原文地址:https://www.cnblogs.com/zfyouxi/p/4639097.html
Copyright © 2011-2022 走看看