zoukankan      html  css  js  c++  java
  • B二分法

    <span style="color:#330099;">/*
    B - 二分法 基金会
    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
    Submit
     
    Status
    Description
    Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The stalls are located along a straight line at positions x1,...,xN (0 <= xi <= 1,000,000,000). 
    
    His C (2 <= C <= N) cows don't like this barn layout and become aggressive towards each other once put into a stall. To prevent the cows from hurting each other, FJ want to assign the cows to the stalls, such that the minimum distance between any two of them is as large as possible. What is the largest minimum distance?
    Input
    * Line 1: Two space-separated integers: N and C 
    
    * Lines 2..N+1: Line i+1 contains an integer stall location, xi
    Output
    * Line 1: One integer: the largest minimum distance
    Sample Input
    5 3
    1
    2
    8
    4
    9
    By Grant Yuan
    2014.7.15
    */
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    int a[100002];
    int n,c;
    int d;
    int l,r;
    int top;
    bool can(int k)
    {  //cout<<"k"<<k<<endl;
        int last,sum,sta;
        sta=0;
        sum=1;
        for(int i=1;i<n;i++)
          {
              if(a[i]-a[sta]>=k)
               {//cout<<" i"<<i<<" sta"<<sta<<endl;
                    sum++;
                   sta=i;
               }
          }
          //cout<<"sum"<<sum<<endl;
          if(sum>=c)
             return true;
         else
             return false;
    }
    
    int main()
    {   int i;
        int num;
        int last;
        while(~scanf("%d%d",&n,&c)){
       // cin>>n>>c;
        for(i=0;i<n;i++)
           cin>>a[i];
        //top=i;
        sort(a,a+n);
        l=a[0];r=a[n-1]+1;
        int mid;
        while(r-l>1){
            mid=(l+r)/2;
           if(can(mid)){
               l=mid;
               }
            else
            {
                 r=mid;
            }
      }
    cout<<l<<endl;
    
    }  }
    </span>

    版权声明:本文博客原创文章,博客,未经同意,不得转载。

  • 相关阅读:
    Mycat 安全设置
    基于 HA 机制的 Mycat 高可用
    mycat中间件进行MySQL数据表的水平拆分
    mycat中间件进行MySQL数据库的垂直拆分
    mycat中间件进行MySQL的数据读写分离
    dubbo环境搭建--Windows
    分布式应用架构的发展演变RPC
    Java新特性--方法引用
    Java新特性-stream流
    Java新特性-四大函数式接口
  • 原文地址:https://www.cnblogs.com/zfyouxi/p/4661204.html
Copyright © 2011-2022 走看看