zoukankan      html  css  js  c++  java
  • caffe源代码分析--data_layer.cpp


    dataLayer作为整个网络的输入层,

    数据从leveldb中取。

    leveldb的数据是通过图片转换过来的。

    网络建立的时候。

    datalayer主要是负责设置一些參数,比方batchsize。channels,height。width等。

    这次会通过读leveldb一个数据块来获取这些信息。

    然后启动一个线程来预先从leveldb拉取一批数据。这些数据是图像数据和图像标签。


    正向传播的时候,

    datalayer就把预先拉取好数据复制到指定的cpu或者gpu的内存。

    然后启动新线程再预先拉取数据,这些数据留到下一次正向传播使用。


    // Copyright 2013 Yangqing Jia
    
    #include <stdint.h>
    #include <leveldb/db.h>
    #include <pthread.h>
    
    #include <string>
    #include <vector>
    
    #include "caffe/layer.hpp"
    #include "caffe/util/io.hpp"
    #include "caffe/vision_layers.hpp"
    
    using std::string;
    
    namespace caffe {
    
    template <typename Dtype>
    void* DataLayerPrefetch(void* layer_pointer) {
      CHECK(layer_pointer);
      DataLayer<Dtype>* layer = reinterpret_cast<DataLayer<Dtype>*>(layer_pointer);
      CHECK(layer);
      Datum datum;
      CHECK(layer->prefetch_data_);
      Dtype* top_data = layer->prefetch_data_->mutable_cpu_data();//数据
      Dtype* top_label = layer->prefetch_label_->mutable_cpu_data();//标签
      const Dtype scale = layer->layer_param_.scale();
      const int batchsize = layer->layer_param_.batchsize();
      const int cropsize = layer->layer_param_.cropsize();
      const bool mirror = layer->layer_param_.mirror();
    
      if (mirror && cropsize == 0) {//当前实现须要同一时候设置mirror和cropsize
        LOG(FATAL) << "Current implementation requires mirror and cropsize to be "
            << "set at the same time.";
      }
      // datum scales
      const int channels = layer->datum_channels_;
      const int height = layer->datum_height_;
      const int width = layer->datum_width_;
      const int size = layer->datum_size_;
      const Dtype* mean = layer->data_mean_.cpu_data();
      for (int itemid = 0; itemid < batchsize; ++itemid) {//每一批数据的数量是batchsize。一个循环拉取一张?
        // get a blob
        CHECK(layer->iter_);
        CHECK(layer->iter_->Valid());
        datum.ParseFromString(layer->iter_->value().ToString());//利用迭代器拉取下一批数据
        const string& data = datum.data();
        if (cropsize) {//假设须要裁剪
          CHECK(data.size()) << "Image cropping only support uint8 data";
          int h_off, w_off;
          // We only do random crop when we do training.
          //仅仅是在训练阶段做随机裁剪
          if (Caffe::phase() == Caffe::TRAIN) {
            // NOLINT_NEXT_LINE(runtime/threadsafe_fn)
            h_off = rand() % (height - cropsize);
            // NOLINT_NEXT_LINE(runtime/threadsafe_fn)
            w_off = rand() % (width - cropsize);
          } else {//測试阶段固定裁剪
            h_off = (height - cropsize) / 2;
            w_off = (width - cropsize) / 2;
          }
          // NOLINT_NEXT_LINE(runtime/threadsafe_fn)
          //怎么感觉以下两种情况的代码是一样的?
          if (mirror && rand() % 2) {
            // Copy mirrored version
            for (int c = 0; c < channels; ++c) {
              for (int h = 0; h < cropsize; ++h) {
                for (int w = 0; w < cropsize; ++w) {
                  top_data[((itemid * channels + c) * cropsize + h) * cropsize
                           + cropsize - 1 - w] =
                      (static_cast<Dtype>(
                          (uint8_t)data[(c * height + h + h_off) * width
                                        + w + w_off])
                        - mean[(c * height + h + h_off) * width + w + w_off])
                      * scale;
                }
              }
            }
          } else {
            // Normal copy
            for (int c = 0; c < channels; ++c) {
              for (int h = 0; h < cropsize; ++h) {
                for (int w = 0; w < cropsize; ++w) {
                  top_data[((itemid * channels + c) * cropsize + h) * cropsize + w]
                      = (static_cast<Dtype>(
                          (uint8_t)data[(c * height + h + h_off) * width
                                        + w + w_off])
                         - mean[(c * height + h + h_off) * width + w + w_off])
                      * scale;
                }
              }
            }
          }
        } else {//假设不须要裁剪
          // we will prefer to use data() first, and then try float_data()
          //我们优先考虑data(),然后float_data()
          if (data.size()) {
            for (int j = 0; j < size; ++j) {
              top_data[itemid * size + j] =
                  (static_cast<Dtype>((uint8_t)data[j]) - mean[j]) * scale;
            }
          } else {
            for (int j = 0; j < size; ++j) {
              top_data[itemid * size + j] =
                  (datum.float_data(j) - mean[j]) * scale;
            }
          }
        }
    
        top_label[itemid] = datum.label();
        // go to the next iter
        layer->iter_->Next();
        if (!layer->iter_->Valid()) {
          // We have reached the end. Restart from the first.
          DLOG(INFO) << "Restarting data prefetching from start.";
          layer->iter_->SeekToFirst();
        }
      }
    
      return reinterpret_cast<void*>(NULL);
    }
    
    template <typename Dtype>
    DataLayer<Dtype>::~DataLayer<Dtype>() {
      // Finally, join the thread
      CHECK(!pthread_join(thread_, NULL)) << "Pthread joining failed.";
    }
    
    template <typename Dtype>
    void DataLayer<Dtype>::SetUp(const vector<Blob<Dtype>*>& bottom,
          vector<Blob<Dtype>*>* top) {
      CHECK_EQ(bottom.size(), 0) << "Data Layer takes no input blobs.";
      CHECK_EQ(top->size(), 2) << "Data Layer takes two blobs as output.";
      // Initialize the leveldb
      leveldb::DB* db_temp;
      leveldb::Options options;
      options.create_if_missing = false;
      options.max_open_files = 100;
      LOG(INFO) << "Opening leveldb " << this->layer_param_.source();
      leveldb::Status status = leveldb::DB::Open(
          options, this->layer_param_.source(), &db_temp);
      CHECK(status.ok()) << "Failed to open leveldb "
          << this->layer_param_.source() << std::endl << status.ToString();
      db_.reset(db_temp);
      iter_.reset(db_->NewIterator(leveldb::ReadOptions()));//通过迭代器来操纵leveldb
      iter_->SeekToFirst();
      // Check if we would need to randomly skip a few data points
      //是否要随机跳过一些数据
      if (this->layer_param_.rand_skip()) {
        // NOLINT_NEXT_LINE(runtime/threadsafe_fn)
        unsigned int skip = rand() % this->layer_param_.rand_skip();
        LOG(INFO) << "Skipping first " << skip << " data points.";
        while (skip-- > 0) {//循环次数
          iter_->Next();
          if (!iter_->Valid()) {
            iter_->SeekToFirst();
          }
        }
      }
      // Read a data point, and use it to initialize the top blob.
      //读取一个数据点。用来初始化topblob。所谓初始化,仅仅要是指reshape。
      //能够观察到以下iter_调用调用next。所以这次读取仅仅是用来读取出来channels等參数的,不作处理。
      Datum datum;
      datum.ParseFromString(iter_->value().ToString());//利用迭代器读取第一个数据点
      // image图像数据
      int cropsize = this->layer_param_.cropsize();//裁剪大小
      if (cropsize > 0) {//须要裁剪
        (*top)[0]->Reshape(
            this->layer_param_.batchsize(), datum.channels(), cropsize, cropsize);
        prefetch_data_.reset(new Blob<Dtype>(
            this->layer_param_.batchsize(), datum.channels(), cropsize, cropsize));
      } else {//不须要裁剪
        (*top)[0]->Reshape(
            this->layer_param_.batchsize(), datum.channels(), datum.height(),
            datum.width());
        prefetch_data_.reset(new Blob<Dtype>(
            this->layer_param_.batchsize(), datum.channels(), datum.height(),
            datum.width()));
      }
      LOG(INFO) << "output data size: " << (*top)[0]->num() << ","
          << (*top)[0]->channels() << "," << (*top)[0]->height() << ","
          << (*top)[0]->width();
      // label标签数据
      (*top)[1]->Reshape(this->layer_param_.batchsize(), 1, 1, 1);
      prefetch_label_.reset(
          new Blob<Dtype>(this->layer_param_.batchsize(), 1, 1, 1));
      // datum size
      datum_channels_ = datum.channels();
      datum_height_ = datum.height();
      datum_width_ = datum.width();
      datum_size_ = datum.channels() * datum.height() * datum.width();
      CHECK_GT(datum_height_, cropsize);
      CHECK_GT(datum_width_, cropsize);
      // check if we want to have mean是否要减去均值
      if (this->layer_param_.has_meanfile()) {
        BlobProto blob_proto;
        LOG(INFO) << "Loading mean file from" << this->layer_param_.meanfile();
        ReadProtoFromBinaryFile(this->layer_param_.meanfile().c_str(), &blob_proto);
        data_mean_.FromProto(blob_proto);
        CHECK_EQ(data_mean_.num(), 1);
        CHECK_EQ(data_mean_.channels(), datum_channels_);
        CHECK_EQ(data_mean_.height(), datum_height_);
        CHECK_EQ(data_mean_.width(), datum_width_);
      } else {
        // Simply initialize an all-empty mean.
        data_mean_.Reshape(1, datum_channels_, datum_height_, datum_width_);
      }
      // Now, start the prefetch thread. Before calling prefetch, we make two
      // cpu_data calls so that the prefetch thread does not accidentally make
      // simultaneous cudaMalloc calls when the main thread is running. In some
      // GPUs this seems to cause failures if we do not so.
      prefetch_data_->mutable_cpu_data();
      prefetch_label_->mutable_cpu_data();
      data_mean_.cpu_data();
      DLOG(INFO) << "Initializing prefetch";
      CHECK(!pthread_create(&thread_, NULL, DataLayerPrefetch<Dtype>,
          reinterpret_cast<void*>(this))) << "Pthread execution failed.";
      DLOG(INFO) << "Prefetch initialized.";
    }
    
    template <typename Dtype>
    void DataLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
          vector<Blob<Dtype>*>* top) {
      // First, join the thread 等待线程结束
      CHECK(!pthread_join(thread_, NULL)) << "Pthread joining failed.";
      // Copy the data拷贝数据到top,即该层的输出
      memcpy((*top)[0]->mutable_cpu_data(), prefetch_data_->cpu_data(),
          sizeof(Dtype) * prefetch_data_->count());
      memcpy((*top)[1]->mutable_cpu_data(), prefetch_label_->cpu_data(),
          sizeof(Dtype) * prefetch_label_->count());
      // Start a new prefetch thread启动新线程拉取下一批数据
      CHECK(!pthread_create(&thread_, NULL, DataLayerPrefetch<Dtype>,
          reinterpret_cast<void*>(this))) << "Pthread execution failed.";
    }
    
    // The backward operations are dummy - they do not carry any computation.
    template <typename Dtype>
    Dtype DataLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
          const bool propagate_down, vector<Blob<Dtype>*>* bottom) {
      return Dtype(0.);
    }
    
    INSTANTIATE_CLASS(DataLayer);
    
    }  // namespace caffe
    


    本文作者:linger

    本文链接:http://blog.csdn.net/lingerlanlan/article/details/27348265



  • 相关阅读:
    LInux下几种定时器的比较和使用
    R中字符串操作
    GIS基本概念
    特征选择实践
    xcrun: error: invalid active developer path (/Applications/Xcode.app/Contents/Developer)解决办法
    mac os idea的快捷键
    python代码打包发布
    机器学习之聚类
    机器学习之决策树
    机器学习之逻辑回归
  • 原文地址:https://www.cnblogs.com/zfyouxi/p/5219942.html
Copyright © 2011-2022 走看看