The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e'. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T's is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {'A', 'B', 'C', …, 'Z'} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
InputThe first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with the word W, a string over {'A', 'B', 'C', …, 'Z'}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
One line with the text T, a string over {'A', 'B', 'C', …, 'Z'}, with |W| ≤ |T| ≤ 1,000,000.
OutputFor every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3 BAPC BAPC AZA AZAZAZA VERDI AVERDXIVYERDIAN
Sample Output
1 3 0
http://blog.csdn.net/v_july_v/article/details/7041827(kmp的算法详解)
1 #include<iostream> 2 #include<cstring> 3 #include<string> 4 #include<cstdio> 5 using namespace std; 6 7 int n; 8 int nxt[1000005]; 9 char p[10005],s[1000005]; 10 11 void getNext(char *p){ 12 nxt[0]=-1; 13 int len=strlen(p); 14 for(int i=0;i<len;i++){ 15 int k=nxt[i]; 16 while(k!=-1&&p[i]!=p[k]) k=nxt[k]; 17 nxt[i+1]=k+1; 18 } 19 } 20 21 int kmp(char *s,char *p){ 22 getNext(p); 23 int ans=0,i=0,j=0,lens=strlen(s),lenp=strlen(p); 24 while(i<lens){ 25 if(j==-1||s[i]==p[j]){ 26 i++; 27 j++; 28 } 29 else j=nxt[j]; 30 if(j==lenp){ 31 ans++; 32 j=nxt[j]; 33 } 34 } 35 return ans; 36 } 37 38 int main() 39 { scanf("%d",&n); 40 while(n--){ 41 scanf("%s%s",p,s); 42 printf("%d ",kmp(s,p)); 43 } 44 }