This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.
An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.
As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.
For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.
Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.
Input
Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.
Output
For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.
Sample Input
21 85 789 0
Sample Output
21 0 85 5 789 62
好题,以后还要重新再写一遍,筛法的思想
1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 #include<algorithm> 5 using namespace std; 6 7 const int maxn=1000005; 8 9 int n; 10 int a[maxn],cnt[maxn]; 11 12 void inite(){ 13 for(int i=5;i<maxn;i+=4){ 14 for(int j=5;i*j<maxn;j+=4){ 15 if(a[i]==0&&a[j]==0) a[i*j]=1; 16 else a[i*j]=-1; 17 } 18 } 19 int ans=0; 20 for(int i=1;i<maxn;i++){ 21 if(a[i]==1) ans++; 22 cnt[i]=ans; 23 } 24 } 25 26 int main() 27 { inite(); 28 while(cin>>n&&n) printf("%d %d ",n,cnt[n]); 29 return 0; 30 }