zoukankan      html  css  js  c++  java
  • Bottles CodeForces

    Nick has n bottles of soda left after his birthday. Each bottle is described by two values: remaining amount of soda ai and bottle volume bi (ai ≤ bi).

    Nick has decided to pour all remaining soda into minimal number of bottles, moreover he has to do it as soon as possible. Nick spends x seconds to pour x units of soda from one bottle to another.

    Nick asks you to help him to determine k — the minimal number of bottles to store all remaining soda and t — the minimal time to pour soda into k bottles. A bottle can't store more soda than its volume. All remaining soda should be saved.

    Input

    The first line contains positive integer n (1 ≤ n ≤ 100) — the number of bottles.

    The second line contains n positive integers a1, a2, ..., an (1 ≤ ai ≤ 100), where ai is the amount of soda remaining in the i-th bottle.

    The third line contains n positive integers b1, b2, ..., bn (1 ≤ bi ≤ 100), where bi is the volume of the i-th bottle.

    It is guaranteed that ai ≤ bi for any i.

    Output

    The only line should contain two integers k and t, where k is the minimal number of bottles that can store all the soda and t is the minimal time to pour the soda into k bottles.

    Example

    Input
    4
    3 3 4 3
    4 7 6 5
    Output
    2 6
    Input
    2
    1 1
    100 100
    Output
    1 1
    Input
    5
    10 30 5 6 24
    10 41 7 8 24
    Output
    3 11

    Note

    In the first example Nick can pour soda from the first bottle to the second bottle. It will take 3 seconds. After it the second bottle will contain 3 + 3 = 6 units of soda. Then he can pour soda from the fourth bottle to the second bottle and to the third bottle: one unit to the second and two units to the third. It will take 1 + 2 = 3 seconds. So, all the soda will be in two bottles and he will spend 3 + 3 = 6 seconds to do it.

    题解:dp[ i ][ j ][ k ]表示1~i个瓶子中已选j个瓶子得到的最大实际装水量。那么dp[ i ][ j ][ k ]=max(dp[ i ] [ j ] [ k ],dp[ i - 1 ][ j - 1][ k - b[ i ] ] + a[ i ] )。

    首先,题目要求最少的瓶子最短的时间,而最少的瓶子满足其总容量大于->实际水的总量<-(sumN)。所需要的时间,则是水的总量(sumN)减去这k个瓶子装的水的总量。所以time=sum1-maxSum(K)。

    dp好难,初始化都不好掌握 ,><

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 
     4 const int maxn=105;
     5 
     6 int n,sum1,sum2;
     7 int dp[maxn][maxn*maxn];
     8 
     9 struct node{
    10     int a,b;
    11     bool operator<(const node& i)const{
    12         return i.b<b;
    13     }
    14 }p[maxn];
    15 
    16 void Inite(){
    17     memset(dp,-1,sizeof(dp));
    18     dp[0][0]=0;
    19 }
    20 
    21 void Solve(){
    22     int tem=0,q=1;
    23     for(int i=1;i<=n;i++){
    24         tem+=p[i].b;
    25         q=i;
    26         if(tem>=sum1) break;
    27     }
    28     for(int i=1;i<=n;i++)
    29         for(int j=q;j>=1;j--)
    30             for(int k=sum2;k>=p[i].b;k--) 
    31                 if(~dp[j-1][k-p[i].b]) dp[j][k]=max(dp[j][k],dp[j-1][k-p[i].b]+p[i].a);
    32     int ans=0;
    33     for(int i=sum1;i<=sum2;i++) ans=max(ans,dp[q][i]);
    34     cout<<q<<" "<<sum1-ans<<endl;
    35 }
    36 
    37 int main()
    38 {    
    39     cin>>n;
    40     Inite();
    41     sum1=sum2=0;
    42     for(int i=1;i<=n;i++){ cin>>p[i].a; sum1+=p[i].a; }
    43     for(int i=1;i<=n;i++){ cin>>p[i].b; sum2+=p[i].b; }
    44     sort(p+1,p+n+1);
    45     Solve();
    46 }
  • 相关阅读:
    谷歌地图地理解析和反解析geocode.geocoder详解(转)
    Html5 Geolocation获取地理位置信息(转)
    利用单片机快速实现家庭智能控制平台
    邪恶改装:TPYBoard制作廉价WIFI干扰器
    [TPYBoard
    [TPYBoard
    [TPYBoard
    python中的subprocess.Popen()使用
    KVM虚拟机的xml配置文件
    Linux LVM 总结
  • 原文地址:https://www.cnblogs.com/zgglj-com/p/7859721.html
Copyright © 2011-2022 走看看