zoukankan      html  css  js  c++  java
  • Weakness and Poorness CodeForces

    You are given a sequence of n integers a1, a2, ..., an.

    Determine a real number x such that the weakness of the sequence a1 - x, a2 - x, ..., an - x is as small as possible.

    The weakness of a sequence is defined as the maximum value of the poorness over all segments (contiguous subsequences) of a sequence.

    The poorness of a segment is defined as the absolute value of sum of the elements of segment.

    Input

    The first line contains one integer n (1 ≤ n ≤ 200 000), the length of a sequence.

    The second line contains n integers a1, a2, ..., an (|ai| ≤ 10 000).

    Output

    Output a real number denoting the minimum possible weakness of a1 - x, a2 - x, ..., an - x. Your answer will be considered correct if its relative or absolute error doesn't exceed 10 - 6.

    Example

    Input
    3
    1 2 3
    Output
    1.000000000000000
    Input
    4
    1 2 3 4
    Output
    2.000000000000000
    Input
    10
    1 10 2 9 3 8 4 7 5 6
    Output
    4.500000000000000

    Note

    For the first case, the optimal value of x is 2 so the sequence becomes  - 1, 0, 1 and the max poorness occurs at the segment "-1" or segment "1". The poorness value (answer) equals to 1 in this case.

    For the second sample the optimal value of x is 2.5 so the sequence becomes  - 1.5,  - 0.5, 0.5, 1.5 and the max poorness occurs on segment "-1.5 -0.5" or "0.5 1.5". The poorness value (answer) equals to 2 in this case.

    The poorness:连续子序列的和的绝对值。

    题解:ternary searc(三分查找)https://www.cnblogs.com/whywhy/p/4886641.html,很典型的三分题。x取极值时最小,否则都会增大,所以是一个凹函数。

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 
     4 const int maxn=2e5+5;
     5 
     6 int n;
     7 int a[maxn];
     8 
     9 double maxSum(double A[]){
    10     double ans=0,tem=0;
    11     for(int i=1;i<=n;i++){
    12         tem+=A[i];
    13         if(tem<0) tem=0;
    14         ans=max(ans,tem);
    15     }
    16     return ans;
    17 }
    18 
    19 double compute(double x){
    20     double b[maxn];
    21     for(int i=1;i<=n;i++) b[i]=a[i]-x;
    22     double ans1=maxSum(b);
    23     for(int i=1;i<=n;i++) b[i]=-b[i];
    24     double ans2=maxSum(b);
    25     return max(ans1,ans2);
    26 }
    27 
    28 int main()
    29 {   scanf("%d",&n);
    30     for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    31     double l=-1e4,r=1e4;
    32     for(int i=1;i<=100;i++){
    33         double midl=(2*l+r)/3.0;
    34         double midr=(2*r+l)/3.0;
    35         if(compute(midl)<compute(midr)) r=midr;
    36         else l=midl;
    37     }
    38     printf("%.7f
    ",compute(r));
    39 } 
  • 相关阅读:
    【AppScan心得】IBM Rational AppScan 无法记录登录序列
    tomcat记录XForwardedFor字段中的远程IP
    【AppScan深入浅出】修复漏洞:会话标识未更新(中危)
    用java在Windows控制台输出utf8字符
    【图解漏洞】图解跨站脚本攻击(XSS)原理
    【图解漏洞】图解跨站请求伪造(CSRF)原理(之二)
    雅克比矩阵(Jacobian Matrix)在正运动学中的应用
    游戏物理引擎之静态碰撞
    万向节死锁(Gimbal Lock)
    旋转矩阵(Rotate Matrix)的性质分析
  • 原文地址:https://www.cnblogs.com/zgglj-com/p/7875629.html
Copyright © 2011-2022 走看看