zoukankan      html  css  js  c++  java
  • BestCoder Sequence

    Problem Description
    Mr Potato is a coder.
    Mr Potato is the BestCoder.

    One night, an amazing sequence appeared in his dream. Length of this sequence is odd, the median number is M, and he named this sequence as Bestcoder Sequence.

    As the best coder, Mr potato has strong curiosity, he wonder the number of consecutive sub-sequences which are bestcoder sequences in a given permutation of 1 ~ N.
     
    Input
    Input contains multiple test cases.
    For each test case, there is a pair of integers N and M in the first line, and an permutation of 1 ~ N in the second line.

    [Technical Specification]
    1. 1 <= N <= 40000
    2. 1 <= M <= N
     
    Output
    For each case, you should output the number of consecutive sub-sequences which are the Bestcoder Sequences.
     
    Sample Input
    1 1 1 5 3 4 5 3 2 1
     
    Sample Output
    1 3
     
    题解:Bestcoder Sequences显然有个性质,如果令大于m的数为1,令小于m的数为-1,则( a[1]+a[2]+···+a[n] )=0;
    例子:
    5 3
    4 5 3 2 1 <====> 1 1 0 -1 -1 ==>{3},{5 3 2},{4 5 3 2 1}其对应的和都为0。然后再将序列分为两部分,m的左
    边和m的右边。如{4 5}和{2 1},计算它们对应的序列的和,相反的一定能构成Bestcoder Sequences。具体看代码!因
    为和存在是负数的情况,所以这里maxn相当于数轴上的0点。
     1 #pragma warning(disable:4996)
     2 #include<string>
     3 #include<cstdio>
     4 #include<bitset>
     5 #include<cstring>
     6 #include<iostream>
     7 #include<algorithm>
     8 using namespace std;
     9 typedef long long ll;
    10 
    11 const int maxn = 4e4 + 5;
    12 
    13 int n, m;
    14 int a[maxn], ans[2][2 * maxn];
    15 
    16 int main()
    17 {
    18     while (scanf("%d%d", &n, &m) != EOF) {
    19 
    20         memset(ans, 0, sizeof(ans));
    21         ans[0][maxn] = ans[1][maxn] = 1;
    22 
    23         int p, k;
    24         for (int i = 1; i <= n; i++) {
    25             scanf("%d", a + i);
    26             if (a[i] == m) p = i;
    27         }
    28 
    29         k = 0;
    30         for (int i = p + 1; i <= n; i++) {
    31             if (a[i] > m) k++;
    32             else k--;
    33             ans[1][k + maxn]++;
    34         }
    35 
    36         k = 0;
    37         for (int i = p - 1; i >= 1; i--) {
    38             if (a[i] > m) k++;
    39             else k--;
    40             ans[0][k + maxn]++;
    41         }
    42 
    43         k = 0;
    44         for (int i = -n; i <= n; i++) k += (ans[0][i + maxn] * ans[1][maxn - i]);
    45         printf("%d
    ", k);
    46 
    47     }
    48     return 0;
    49 }
     
  • 相关阅读:
    MathType编辑半直积符号的步骤
    用几何画板演示涡旋电场的方法
    MathType编辑双向斜箭头的教程
    最实用的几何画板绘图技巧大总结
    怎么让Word编辑公式又快又好
    在几何画板中作三角形高的方法
    MathType中输入破折号的教程
    几何画板5.06最强中文版破解-下载-注册码
    如何通过几何画板来验证海伦公式
    如何用公式编辑器编辑直角三角形符号
  • 原文地址:https://www.cnblogs.com/zgglj-com/p/8612723.html
Copyright © 2011-2022 走看看