zoukankan      html  css  js  c++  java
  • Problem G. Depth-First Search

    PS:官方题解挺详细的,就是自己写有点难度,在DFS以a[1]为根的树中,要向下传递上一层的合法方案数。也就是 v = v * sum * fac[i](v就是上一层的合法方案数),吐槽一下,计数类的问题是真的麻烦,不重不漏。

    #include<bits/stdc++.h>
    #define ll long long
    #define P pair<int, int>
    #define pb push_back
    #define mp make_pair
    #define pp pop_back
    #define lson root << 1
    #define INF (int)2e9 + 7
    #define rson root << 1 | 1
    #define LINF (unsigned long long int)1e18
    #define sc(x) scanf("%d", &x)
    #define pr(x) printf("%d
    ", x)
    #define mem(arry, in) memset(arry, in, sizeof(arry))
    #define PI acos(0.5) * 3
    #define EPS 0.00000001
    using namespace std;
    
    inline void upd(int&x, int y) { x < y && (x = y); }
    
    const int N = 1000005;
    const int mod = 1000000007;
    
    vector<int> G[N];
    
    int powi(int a, int b) {
        int c = 1;
        for (; b; a = 1ll * a * a % mod, b >>= 1) if (b & 1) c = 1ll * c * a % mod;
        return c;
    }
    
    inline int mul(int a, int b, int c) {
        return 1ll * a * b % mod * c % mod;
    }
    
    inline void init(int n) {
        for (int i = 1; i <= n; ++i) G[i].clear();
    }
    
    struct Tree {
        int n;
        vector<int> T;
        void init(int _n) {
            n = _n;
            T.resize(n + 1);
            for (int i = 0; i <= n; ++i) T[i] = 0;
        }
        void add(int pos, int x) {
            for (int i = pos; i <= n; i += i & -i) T[i] += x;
        }
        int sum(int pos) {
            if (pos > n) pos = n;
            int res = 0;
            for (int i = pos; i; i -= i & -i) res += T[i];
            return res;
        }
    }bit[N];
    
    int T, n, ans, id, d;
    int a[N], fac[N], inv[N], f[N], invf[N];
    
    void Inite() {
        int mx = 1000000;
    
        fac[0] = 1;
        for (int i = 1; i <= mx; ++i) fac[i] = 1ll * fac[i - 1] * i % mod;
    
        inv[mx] = powi(fac[mx], mod - 2);
        for (int i = mx - 1; i; --i) inv[i] = 1ll * inv[i + 1] * (i + 1) % mod;
    }
    
    int solve(int u, int v) {
        id++;
        int sum = 1;
        for (auto tp : G[u]) sum = 1ll * sum * f[tp] % mod;
        for (int i = G[u].size() - 1; ~i; --i) {
            int nxt = lower_bound(G[u].begin(), G[u].end(), a[id + 1]) - G[u].begin();
            int cnt = bit[u].sum(nxt);
            ans = (0ll + ans + 1ll * mul(sum, fac[i], v) * cnt % mod) % mod;
            if (nxt == G[u].size() || G[u][nxt] != a[id + 1]) return 1;
            bit[u].add(nxt + 1, -1);
            sum = 1ll * sum * invf[G[u][nxt]] % mod;
            if (solve(G[u][nxt], mul(v, fac[i], sum))) return 1;
        }
        return 0;
    }
    
    void DFS(int u, int p) {
        if (p > 0) G[u].erase(find(G[u].begin(), G[u].end(), p));
        f[u] = fac[G[u].size()];
        bit[u].init(G[u].size());
        for (int i = 0; i < G[u].size(); ++i) bit[u].add(i + 1, 1);
        if(!G[u].empty()) {
            sort(G[u].begin(), G[u].end());
            for (auto v : G[u]) {
                DFS(v, u);
                f[u] = 1ll * f[u] * f[v] % mod;
            }
        }
        invf[u] = powi(f[u], mod - 2);
    }
    
    int main()
    {
        Inite();
        sc(T);
        while(T--) {
            sc(n);
            init(n);
            for (int i = 0; i < n; ++i) sc(a[i]);
            for (int i = 1; i < n; ++i) {
                int u, v;
                sc(u), sc(v);
                G[u].pb(v);
                G[v].pb(u);
            }
            a[n] = 0, d = 1, ans = 0, id = -1;
            for (int i = 1; i <= n; ++i) d = 1ll * d * fac[G[i].size() - 1] % mod;
            for (int i = 1; i < a[0]; ++i) ans = (0ll + ans + 1ll * d * G[i].size() % mod) % mod;
            DFS(a[0], -1);
            solve(a[0], 1);
            printf("%d
    ", ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    LeetCode 40. 组合总和 II(Combination Sum II)
    LeetCode 129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers)
    LeetCode 60. 第k个排列(Permutation Sequence)
    LeetCode 47. 全排列 II(Permutations II)
    LeetCode 46. 全排列(Permutations)
    LeetCode 93. 复原IP地址(Restore IP Addresses)
    LeetCode 98. 验证二叉搜索树(Validate Binary Search Tree)
    LeetCode 59. 螺旋矩阵 II(Spiral Matrix II)
    一重指针和二重指针
    指针的意义
  • 原文地址:https://www.cnblogs.com/zgglj-com/p/9448692.html
Copyright © 2011-2022 走看看