zoukankan      html  css  js  c++  java
  • 《调和分析与非线性发展方程》简介

    本课程是为BICMR研究生数学基础强化班第五期开的一个课程。

    上课时间: 每周二晚上6:00-9:00

    上课地点: 数学中心甲乙丙楼82J12教室

    教材:自写讲义

    调和分析与非线性发展方程是现代数学的一个热点领域, 活跃着一批世界顶尖的数学家. 本课程旨在介绍近几十年来在色散PDE领域所发展的调和分析方法, 并介绍相关的前沿课题和进展. 内容将涵盖: 1. 调和分析基础(Fourier变换,极大函数,奇异积分算子,Littlewood-Paley理论,函数空间,振荡积分). 2. 非线性Schrodinger和波方程的局部/整体分析 (Strichartz估计,适定性,散色理论). 3.其他方程/系统的相关研究(optional)(KdV方程, 光滑效应空间, Bourgain空间).

    先修课程: 本科生课程中的<实变函数>,<泛函分析>,<数学物理方程>, 掌握分布理论, $L^p$空间.

    第一部分: 调和分析基础

    1.1 Fourier变换
    1.1.1 定义及性质 
    1.1.2 Fourier变换的应用
    1.1.3 $L^p$上的Fourier乘子
    1.2 Hardy-Littlewood极大函数
    1.2.1 H-L极大算子的有界性
    1.2.2 向量值极大函数
    1.2.3 若干应用
    1.3 Calder\'{o}n-Zygmund奇异积分理论
    1.3.1 三代奇异积分
    1.3.2 向量值奇异积分
    1.4 Littlewood-Paley理论 
    1.4.1 二进制分解
    1.4.2 Littlewood-Paley平方函数定理
    1.5 函数空间
    1.5.1 Besov, Triebel-Lizorkin空间
    1.5.2 嵌入定理以及微分差分刻划
    1.6 振荡积分
    1.6.1 第一型振荡积分 
    1.6.2 第二型振荡积分

  • 相关阅读:
    Ubuntu Server 17.04安装GNOME指令
    docker应用笔记
    无线网络连接配置
    bind9的一些配置
    关于linux下的文件权限
    命令行模式下设置时区
    Linux下SSL证书申请以及配置到Nginx
    编译安装Nginx到Linux
    网页画流程图
    为什么Java字符串是不可变对象?
  • 原文地址:https://www.cnblogs.com/zguo/p/2909119.html
Copyright © 2011-2022 走看看