A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3 Output: 28
使用dp,时间复杂度O(mn)
public int uniquePaths(int m, int n) {//my dp int[][] flag = new int[m][n]; for(int i = 0;i<m;i++){ for(int j = 0;j<n;j++){ if(i==0||j==0){//第一行第一列设置为1 flag[i][j] =1; } else{ flag[i][j] = flag[i-1][j]+flag[i][j-1]; } } } return flag[m-1][n-1]; }
相关题:
不同的路径2 LeetCode63 https://www.cnblogs.com/zhacai/p/10941829.html