Graham求凸包 O(N * logN)
View Code
/*==================================================*\ | Graham求凸包 O(N * logN) | CALL: nr = graham(pnt, int n, res); |pnt[]为给定点集 n为点的个数 res[]为凸包点集; \*==================================================*/ struct Tpoint {int x,y;}g[MM]; //注意点的类型 Tpoint res[MM]; bool mult(Tpoint sp, Tpoint ep, Tpoint op){ return (sp.x-op.x) * (ep.y-op.y)>=(ep.x-op.x)*(sp.y-op.y); } bool operator<(const Tpoint &l, const Tpoint &r){ return l.y<r.y || (l.y==r.y && l.x<r.x); } int graham(Tpoint pnt[], int64 n, Tpoint res[]){ int i, len, k = 0, top = 1; sort(pnt, pnt + n); if (n == 0) return 0; res[0] = pnt[0]; if (n == 1) return 1; res[1] = pnt[1]; if (n == 2) return 2; res[2] = pnt[2]; for (i = 2; i < n; i++) { while (top && mult(pnt[i], res[top], res[top-1])) top--; res[++top] = pnt[i]; } len = top; res[++top] = pnt[n - 2]; for (i = n - 3; i >= 0; i--) { while (top!=len && mult(pnt[i], res[top], res[top-1])) top--; res[++top] = pnt[i]; } return top; // 返回凸包中点的个数 }