zoukankan      html  css  js  c++  java
  • hbase和mapreduce开发 WordCount

    代码:

    /**
    * hello world by world  测试数据
    * @author a
    *
    */
    public class DefinedMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
          @Override
        protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context)
     throws IOException, InterruptedException {
          long num=1L;
          if(null!=value){
            String strValue=value.toString();
            String arrValue[]=strValue.split(" ");
          if(arrValue.length==4){
            for(int i=0;i<arrValue.length;i++){
              context.write(new Text(arrValue[i].toString()), new LongWritable(num));
             }
          }
        }
    }
    }
     
    public class DefinedReduce extends TableReducer{
        @Override
        protected void reduce(Object arg0, Iterable values, Context arg2) throws IOException, InterruptedException {
          if(null!=values){
            long num=0l;
            Iterator<LongWritable> it=values.iterator();
            while(it.hasNext()){
              LongWritable count=it.next();
              num+=Long.valueOf(count.toString());
            }
            Put put=new Put(String.valueOf(arg0).getBytes());//设置行键
            put.add("context".getBytes(), "count".getBytes(), String.valueOf(num).getBytes());
            arg2.write(arg0, put);
          }
        }
    }
     
    package com.zhang.hbaseandmapreduce;
    
    import java.io.IOException;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.hbase.HBaseConfiguration;
    import org.apache.hadoop.hbase.HColumnDescriptor;
    import org.apache.hadoop.hbase.HTableDescriptor;
    import org.apache.hadoop.hbase.client.HBaseAdmin;
    import org.apache.hadoop.hbase.mapreduce.TableOutputFormat;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    
    public class HBaseAndMapReduce {
        public static void createTable(String tableName){
            Configuration conf=HBaseConfiguration.create();
            HTableDescriptor htable=new HTableDescriptor(tableName);
            HColumnDescriptor hcol=new HColumnDescriptor("context");
            try {
                HBaseAdmin admin=new HBaseAdmin(conf);
                if(admin.tableExists(tableName)){
                    System.out.println(tableName+" 已经存在");
                    return;
                }
                htable.addFamily(hcol);
                admin.createTable(htable);
                System.out.println(tableName+" 创建成功");
            } catch (IOException e) {
                e.printStackTrace();
            }
            
        }
        public static void main(String[] args) {
            String tableName="workCount";
            Configuration conf=new Configuration();
            conf.set(TableOutputFormat.OUTPUT_TABLE, tableName);
            conf.set("hbase.zookeeper.quorum", "192.168.177.124:2181");
            createTable(tableName);
            try {
                Job job=new Job(conf);
                job.setJobName("hbaseAndMapReduce");
                job.setJarByClass(HBaseAndMapReduce.class);//jar的运行主类
                job.setOutputKeyClass(Text.class);//mapper key的输出类型
                job.setOutputValueClass(LongWritable.class);//mapper value的输出类型
                job.setMapperClass(DefinedMapper.class);
                job.setReducerClass(DefinedReduce.class);
                job.setInputFormatClass(org.apache.hadoop.mapreduce.lib.input.TextInputFormat.class);
                job.setOutputFormatClass(TableOutputFormat.class);
                FileInputFormat.addInputPath(job, new Path("/tmp/dataTest/data.text"));
                System.exit(job.waitForCompletion(true) ? 0:1);
                } catch (Exception e) {
                e.printStackTrace();
            }
            
        }
    
    }
     
     
    打成jar包,放到linux主机服务器上
    执行下面命令
     
    [root@node4 Desktop]# hadoop jar hbaseAndMapR.jar com.zhang.hbaseandmapreduce.HBaseAndMapReduce
    遇到问题:
    注意:
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(LongWritable.class);
    这两行代码设置的key,value类型,是设置mapper的输出key和value.
    ---------------------------------------------------------------------
    》1:出现了三种异常
    这个是在hadoop-root-namenode-node4.out出现的异常
    (1)2017-01-07 06:53:33,493 INFO org.apache.hadoop.yarn.server.nodemanager.containermanager.monitor.ContainersMonitorImpl: Memory usage of ProcessTree 14615 for container-id container_1483797859000_0001_01_000001: 80.9 MB of 2 GB physical memory used; 1.7 GB of 4.2 GB virtual memory used
    (2)Detected pause in JVM or host machine (eg GC): pause of approximately 3999ms
    (3)AttemptID:attempt_1462439785370_0055_m_000001_0 Timed out after 600 secs
    同时hbase的日志中也出现异常
    MB of 1 GB physical memory used; 812.3 MB of 2.1 GB virtual memory used
     
    从日志上这些日志都是在说内存的问题,在看了hadoop的异常日志发现内存挺正常的,所以觉得应该不是hadoop的内存不够才导致出现这种异常,但是发现hadoop有超时的异常,所以我修改了mapper的超时时间;既然不是hadoop的内存问题那就应该是hbase的内存问题了,所以我修改了hbase的配置
    <property>
        <name>mapred.task.timeout</name>
        <value>180000</value>
    </property>
     
    habse--env.sh 修改了以下内容
    # The maximum amount of heap to use. Default is left to JVM default.
    export HBASE_HEAPSIZE=2G
    # Uncomment below if you intend to use off heap cache. For example, to allocate 8G of
    # offheap, set the value to "8G".
    export HBASE_OFFHEAPSIZE=2G
    再次运行成功
     
     
     
     
     
  • 相关阅读:
    [原创]设计模式建造者模式
    [原创]设计模式抽象工厂模式
    svn的branch/tag(转)
    [原创]设计模式访问者模式
    自定义安装python,退格,方向键无法正常使用(转)
    关于UDP 数据包长度的选择
    cent os 查看服务器信息
    【开源】QuickPager 分页控件的内部结构,和OO原则与设计模式
    【思路】表单控件和查询控件,整理一下思路。
    【测试】两种数据库,四种分页算法的效率比较
  • 原文地址:https://www.cnblogs.com/zhangXingSheng/p/6277348.html
Copyright © 2011-2022 走看看