zoukankan      html  css  js  c++  java
  • ratelimit.go

    // The ratelimit package provides an efficient token bucket implementation
    // that can be used to limit the rate of arbitrary things.
    // See http://en.wikipedia.org/wiki/Token_bucket.
    package ratelimit

    import (
        "math"
        "strconv"
        "sync"
        "time"
    )

    // Bucket represents a token bucket that fills at a predetermined rate.
    // Methods on Bucket may be called concurrently.
    //令牌桶  结构体
    type Bucket struct {
        startTime    time.Time  //开始时间
        capacity     int64    //令牌桶容量
        quantum      int64     //
        fillInterval time.Duration   //

        // The mutex guards the fields following it.
        mu sync.Mutex

        // avail holds the number of available tokens
        // in the bucket, as of availTick ticks from startTime.
        // It will be negative when there are consumers
        // waiting for tokens.
        avail     int64
        availTick int64
    }

    // NewBucket returns a new token bucket that fills at the
    // rate of one token every fillInterval, up to the given
    // maximum capacity. Both arguments must be
    // positive. The bucket is initially full.
    func NewBucket(fillInterval time.Duration, capacity int64) *Bucket {
        return NewBucketWithQuantum(fillInterval, capacity, 1)
    }

    // rateMargin specifes the allowed variance of actual
    // rate from specified rate. 1% seems reasonable.
    const rateMargin = 0.01

    // NewBucketWithRate returns a token bucket that fills the bucket
    // at the rate of rate tokens per second up to the given
    // maximum capacity. Because of limited clock resolution,
    // at high rates, the actual rate may be up to 1% different from the
    // specified rate.
    func NewBucketWithRate(rate float64, capacity int64) *Bucket {
        for quantum := int64(1); quantum < 1<<50; quantum = nextQuantum(quantum) {
            fillInterval := time.Duration(1e9 * float64(quantum) / rate)
            if fillInterval <= 0 {
                continue
            }
            tb := NewBucketWithQuantum(fillInterval, capacity, quantum)
            if diff := math.Abs(tb.Rate() - rate); diff/rate <= rateMargin {
                return tb
            }
        }
        panic("cannot find suitable quantum for " + strconv.FormatFloat(rate, 'g', -1, 64))
    }

    // nextQuantum returns the next quantum to try after q.
    // We grow the quantum exponentially, but slowly, so we
    // get a good fit in the lower numbers.
    func nextQuantum(q int64) int64 {
        q1 := q * 11 / 10
        if q1 == q {
            q1++
        }
        return q1
    }

    // NewBucketWithQuantum is similar to NewBucket, but allows
    // the specification of the quantum size - quantum tokens
    // are added every fillInterval.
    func NewBucketWithQuantum(fillInterval time.Duration, capacity, quantum int64) *Bucket {
        if fillInterval <= 0 {
            panic("token bucket fill interval is not > 0")
        }
        if capacity <= 0 {
            panic("token bucket capacity is not > 0")
        }
        if quantum <= 0 {
            panic("token bucket quantum is not > 0")
        }
        return &Bucket{
            startTime:    time.Now(),
            capacity:     capacity,
            quantum:      quantum,
            avail:        capacity,
            fillInterval: fillInterval,
        }
    }

    // Wait takes count tokens from the bucket, waiting until they are
    // available.
    func (tb *Bucket) Wait(count int64) {
        if d := tb.Take(count); d > 0 {
            time.Sleep(d)
        }
    }

    // WaitMaxDuration is like Wait except that it will
    // only take tokens from the bucket if it needs to wait
    // for no greater than maxWait. It reports whether
    // any tokens have been removed from the bucket
    // If no tokens have been removed, it returns immediately.
    func (tb *Bucket) WaitMaxDuration(count int64, maxWait time.Duration) bool {
        d, ok := tb.TakeMaxDuration(count, maxWait)
        if d > 0 {
            time.Sleep(d)
        }
        return ok
    }

    const infinityDuration time.Duration = 0x7fffffffffffffff

    // Take takes count tokens from the bucket without blocking. It returns
    // the time that the caller should wait until the tokens are actually
    // available.
    //
    // Note that if the request is irrevocable - there is no way to return
    // tokens to the bucket once this method commits us to taking them.
    func (tb *Bucket) Take(count int64) time.Duration {
        d, _ := tb.take(time.Now(), count, infinityDuration)
        return d
    }

    // TakeMaxDuration is like Take, except that
    // it will only take tokens from the bucket if the wait
    // time for the tokens is no greater than maxWait.
    //
    // If it would take longer than maxWait for the tokens
    // to become available, it does nothing and reports false,
    // otherwise it returns the time that the caller should
    // wait until the tokens are actually available, and reports
    // true.
    func (tb *Bucket) TakeMaxDuration(count int64, maxWait time.Duration) (time.Duration, bool) {
        return tb.take(time.Now(), count, maxWait)
    }

    // TakeAvailable takes up to count immediately available tokens from the
    // bucket. It returns the number of tokens removed, or zero if there are
    // no available tokens. It does not block.
    func (tb *Bucket) TakeAvailable(count int64) int64 {
        return tb.takeAvailable(time.Now(), count)
    }

    // takeAvailable is the internal version of TakeAvailable - it takes the
    // current time as an argument to enable easy testing.
    func (tb *Bucket) takeAvailable(now time.Time, count int64) int64 {
        if count <= 0 {
            return 0
        }
        tb.mu.Lock()
        defer tb.mu.Unlock()

        tb.adjust(now)
        if tb.avail <= 0 {
            return 0
        }
        if count > tb.avail {
            count = tb.avail
        }
        tb.avail -= count
        return count
    }

    // Available returns the number of available tokens. It will be negative
    // when there are consumers waiting for tokens. Note that if this
    // returns greater than zero, it does not guarantee that calls that take
    // tokens from the buffer will succeed, as the number of available
    // tokens could have changed in the meantime. This method is intended
    // primarily for metrics reporting and debugging.
    func (tb *Bucket) Available() int64 {
        return tb.available(time.Now())
    }

    // available is the internal version of available - it takes the current time as
    // an argument to enable easy testing.
    func (tb *Bucket) available(now time.Time) int64 {
        tb.mu.Lock()
        defer tb.mu.Unlock()
        tb.adjust(now)
        return tb.avail
    }

    // Capacity returns the capacity that the bucket was created with.
    func (tb *Bucket) Capacity() int64 {
        return tb.capacity
    }

    // Rate returns the fill rate of the bucket, in tokens per second.
    func (tb *Bucket) Rate() float64 {
        return 1e9 * float64(tb.quantum) / float64(tb.fillInterval)
    }

    // take is the internal version of Take - it takes the current time as
    // an argument to enable easy testing.
    func (tb *Bucket) take(now time.Time, count int64, maxWait time.Duration) (time.Duration, bool) {
        if count <= 0 {
            return 0, true
        }
        tb.mu.Lock()
        defer tb.mu.Unlock()

        currentTick := tb.adjust(now)
        avail := tb.avail - count
        if avail >= 0 {
            tb.avail = avail
            return 0, true
        }
        // Round up the missing tokens to the nearest multiple
        // of quantum - the tokens won't be available until
        // that tick.
        endTick := currentTick + (-avail+tb.quantum-1)/tb.quantum
        endTime := tb.startTime.Add(time.Duration(endTick) * tb.fillInterval)
        waitTime := endTime.Sub(now)
        if waitTime > maxWait {
            return 0, false
        }
        tb.avail = avail
        return waitTime, true
    }

    // adjust adjusts the current bucket capacity based on the current time.
    // It returns the current tick.
    func (tb *Bucket) adjust(now time.Time) (currentTick int64) {
        currentTick = int64(now.Sub(tb.startTime) / tb.fillInterval)

        if tb.avail >= tb.capacity {
            return
        }
        tb.avail += (currentTick - tb.availTick) * tb.quantum
        if tb.avail > tb.capacity {
            tb.avail = tb.capacity
        }
        tb.availTick = currentTick
        return
    }

  • 相关阅读:
    2016-2017-1 《信息安全系统设计基础》第八周课程总结
    2016-2017-1 《信息安全系统设计基础》第七周课程总结
    2016-2017-1 《信息安全系统设计基础》第六周课程总结
    利用视频会议实训系统进行演示的教程
    别出心裁的Linux系统调用学习法
    基于VirtualBox安装Ubuntu图文教程
    做中学之Vim实践教程
    三百六十五分之一:永与永字八法
    代码驱动的程序设计学习
    2016-2017-1 《信息安全系统设计基础》加扣分项目
  • 原文地址:https://www.cnblogs.com/zhangboyu/p/7461957.html
Copyright © 2011-2022 走看看