There are n black balls and m white balls in the big box.
Now, DZY starts to randomly pick out the balls one by one. It forms a sequence S. If at the i-th operation, DZY takes out the black ball, Si=1, otherwise Si=0.
DZY wants to know the expected times that '01' occurs in S
.
InputThe input consists several test cases. (TestCase≤150)
The first line contains two integers, n, m(1≤n,m≤12)OutputFor each case, output the corresponding result, the format is p/q(p and q are coprime)Sample Input
1 1 2 3
Sample Output
1/2 6/5
Hint
Case 1: S='01' or S='10', so the expected times = 1/2 = 1/2 Case 2: S='00011' or S='00101' or S='00110' or S='01001' or S='01010' or S='01100' or S='10001' or S='10010' or S='10100' or S='11000', so the expected times = (1+2+1+2+2+1+1+1+1+0)/10 = 12/10 = 6/5
回到题目:
这个题目中,我们可以定义随机变量Xi为:
则有:
X=x1+x2+x3+...
且,E(xi)=p(xi=1)=(m/m+n)(n/m+n-1)
则E(X)=E(X1+X2+X3+...X(m+n-1))
=E(1)+E(2)+...+E(m+n-1)
=mn/(m+n)
真的线性性真的牛逼啊
mn/(m+n)
。。。。。。。。