zoukankan      html  css  js  c++  java
  • [ACM-ICPC 2018 沈阳网络赛] C. Convex Hull (莫比乌斯系数容斥)

    We define a function gay(i)gay(i):

     

    displaystyle gay(i)=left{ egin{array}{rcl} & 0, quad& if quad i = k*x*x, x > 1, k geq 1 \ & i * i ,quad& else end{array} ight.gay(i)={0,ii,ifi=kxx,x>1,k1else

     

    Now your task is to calculate

    displaystyle sum_{num=1}^n (sum_{i=1}^{num} gay(i)) mod pnum=1n(i=1numgay(i))modp

     

    Input

    Multiple test cases. Please use EOF.

    In each test case, there are two integers nn, pp, which are described above.

    1 leq n leq 10^{10},1 leq p leq 10^{11}1n1010,1p1011.

    The number of test cases is no more than 100100.

    Output

    For each test case print the answer in one line.

    样例输入

    1 10
    8 19230817

    样例输出

    1
    396

    SOLUTION:
    看到完全平方因子可以想到 莫比乌斯函数 ,当完全平方因子的时候,mu为0
    这个题让求所有的不含完全平方因子的数,容斥一下,
    对于 关于完全平方因子的容斥,枚举平方因子,其容斥系数为mu
    这篇写的不错: https://blog.csdn.net/qkoqhh/article/details/82532516#commentsedit
    CODE:
    #include<bits/stdc++.h>
    
    using namespace std;
    
    typedef unsigned long long ll;
    
    const ll maxn=1e5+10;
    
    pair<__int128,__int128> p[maxn];
    
    ll mod;
    bool vis[maxn];
    int prime[maxn];
    int mu[maxn];
    
    void init(){
        mu[1]=1;
        int tot=0;
        for(int i=2;i<maxn;i++){
            if(!vis[i]){
                prime[tot++]=i;
                mu[i]=-1;
            }
            for(int j=0;j<tot;j++){
                if(i*prime[j]>maxn) break;
                vis[i*prime[j]]=true;
                if(i%prime[j]==0){
                    mu[i*prime[j]]=0;
                    break;
                }else{
                    mu[i*prime[j]]=-mu[i];
                }
            }
        }
    
    }
    
    ll pingfang(ll n){
        __int128 x=n,y=n+1,z=2*n+1;
        if(x%2==0) x/=2;
        else if(y%2==0) y/=2;
        else z/=2;
        if(x%3==0) x/=3;
        else if(y%3==0) y/=3;
        else z/=3;
        return (x%mod*y%mod*z%mod);
    }
    
    ll lifang(ll n){
        __int128 x=n,y=n+1;
        if(x%2==0) x/=2;
        else y/=2;
        return x%mod*x%mod*y%mod*y%mod;
    }
    
    int main(){
        ll n;
        init();
        while(scanf("%lld%lld",&n,&mod)!=EOF){
            for(ll i=0;i*i<=n;i++){
                p[i].first=i%mod*i%mod*i%mod*i%mod;
                p[i].second=i%mod*i%mod*i%mod*i%mod*i%mod*i%mod;
            }
            ll ans=0;
            for(ll i=1;i*i<=n;i++){
                ans+=mod+(n+1)%mod*p[i].first%mod*pingfang(n/(i*i))%mod*mu[i]-p[i].second%mod*lifang(n/(i*i))%mod*mu[i];
                ans=(ans+mod)%mod;
            }
            printf("%lld
    ",ans);
        }
    }
    
    
    

      












  • 相关阅读:
    c实现二叉树
    C实现栈与队列
    c的链表实现
    LB_Keogh
    LB_Yi
    LB_Kim
    Lab7:同步互斥
    Lab6:进程的调度
    Lab45:进程和线程
    Lab3:虚拟内存管理
  • 原文地址:https://www.cnblogs.com/zhangbuang/p/11182502.html
Copyright © 2011-2022 走看看