zoukankan      html  css  js  c++  java
  • Triangle POJ

    Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

    Input

    The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −10 4 <= xi, yi <= 10 4 for all i = 1 . . . n.

    Output

    For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

    Sample Input

    3
    3 4
    2 6
    2 7
    5
    2 6
    3 9
    2 0
    8 0
    6 5
    -1

    Sample Output

    0.50
    27.00

    SOLUTION:
    板子:

    CODE:
    #include <iostream>
    #include <cstdio>
    #include"cmath"
    #include"iomanip"
    #include <algorithm>
    using namespace std;
    const int N=5e4+10;
    struct point{
        int x,y;
    }p[N];
    int dis(point a,point b){
        return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
    }
    int cross(point p0,point p1,point p2){
        return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
    }
    int cmp1(point p1,point p2){
        return p1.x<p2.x||(p1.x==p2.x&&p1.y<p2.y);
    }
    int cmp2(point p1,point p2){
    
    
        int c=cross(p[0],p1,p2);
        if(c==0) return p1.x<p2.x;
        return c>0;
    }
    point sta[N];
    int top;
    void convex(int n){
        top=0;
        sort(p,p+n,cmp1);
        sort(p+1,p+n,cmp2);
        sta[top++]=p[0];
        sta[top++]=p[1];
    
        for(int i=2;i<n;){
    
            if(top>1&&cross(sta[top-2],p[i],sta[top-1])>=0)top--;
            else {
                sta[top++]=p[i++];
            }
    
        }
    }
    
    int rotating()
    {
        int q=1;
        int ans=0;
       // cout<<"all:"<<top<<endl;
        sta[top]=sta[0];
        int j,k;
        j=1,k=2;
    
        for(int i=0;i<top;i++)
        {
            while(cross(sta[i],sta[j],sta[(k+1)%top])>cross(sta[i],sta[j],sta[k]))
                k=(k+1)%top;
            while(cross(sta[i],sta[(j+1)%top],sta[(k)%top])>cross(sta[i],sta[j],sta[k]))
                j=(j+1)%top;
    
            ans=max(ans,abs(cross(sta[i],sta[j],sta[k])));
        }
        cout<<fixed<<setprecision(2)  <<0.5*ans<<endl;
      /*  double t=13.444;
        cout<<fixed<<setprecision(0)<<t<<endl;
        cout<<t<<endl;
        cout<<fixed<<setprecision(2);
        cout<<t<<endl;*/
    }
    
    int main()
    {
        //freopen("cin.txt","r",stdin);
        int n;
        while(cin>>n&&n!=-1){
            for(int i=0;i<n;i++){
                scanf("%d%d",&p[i].x,&p[i].y);
            }
            convex(n);
            rotating();
          //  printf("%d
    ",rotating());
        }
        return 0;
    }
    

      








  • 相关阅读:
    pyspark读取parquet数据
    python求时间差
    pandas索引操作之loc,iloc,ix等方法
    pandas的concat和drop函数
    mysql语句的书写顺序和执行顺序
    hive的lower,upper,length,concat,lpad,rpad,cast,split函数简述
    hive的floor函数,ceil函数,round函数
    Pandas建立空的dataframe和cumsum累加函数
    Python基础笔记二之求序列均值、标准差、中位数、分位数
    NAT实验
  • 原文地址:https://www.cnblogs.com/zhangbuang/p/11432425.html
Copyright © 2011-2022 走看看