zoukankan      html  css  js  c++  java
  • Triangle POJ

    Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

    Input

    The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −10 4 <= xi, yi <= 10 4 for all i = 1 . . . n.

    Output

    For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

    Sample Input

    3
    3 4
    2 6
    2 7
    5
    2 6
    3 9
    2 0
    8 0
    6 5
    -1

    Sample Output

    0.50
    27.00

    SOLUTION:
    板子:

    CODE:
    #include <iostream>
    #include <cstdio>
    #include"cmath"
    #include"iomanip"
    #include <algorithm>
    using namespace std;
    const int N=5e4+10;
    struct point{
        int x,y;
    }p[N];
    int dis(point a,point b){
        return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
    }
    int cross(point p0,point p1,point p2){
        return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
    }
    int cmp1(point p1,point p2){
        return p1.x<p2.x||(p1.x==p2.x&&p1.y<p2.y);
    }
    int cmp2(point p1,point p2){
    
    
        int c=cross(p[0],p1,p2);
        if(c==0) return p1.x<p2.x;
        return c>0;
    }
    point sta[N];
    int top;
    void convex(int n){
        top=0;
        sort(p,p+n,cmp1);
        sort(p+1,p+n,cmp2);
        sta[top++]=p[0];
        sta[top++]=p[1];
    
        for(int i=2;i<n;){
    
            if(top>1&&cross(sta[top-2],p[i],sta[top-1])>=0)top--;
            else {
                sta[top++]=p[i++];
            }
    
        }
    }
    
    int rotating()
    {
        int q=1;
        int ans=0;
       // cout<<"all:"<<top<<endl;
        sta[top]=sta[0];
        int j,k;
        j=1,k=2;
    
        for(int i=0;i<top;i++)
        {
            while(cross(sta[i],sta[j],sta[(k+1)%top])>cross(sta[i],sta[j],sta[k]))
                k=(k+1)%top;
            while(cross(sta[i],sta[(j+1)%top],sta[(k)%top])>cross(sta[i],sta[j],sta[k]))
                j=(j+1)%top;
    
            ans=max(ans,abs(cross(sta[i],sta[j],sta[k])));
        }
        cout<<fixed<<setprecision(2)  <<0.5*ans<<endl;
      /*  double t=13.444;
        cout<<fixed<<setprecision(0)<<t<<endl;
        cout<<t<<endl;
        cout<<fixed<<setprecision(2);
        cout<<t<<endl;*/
    }
    
    int main()
    {
        //freopen("cin.txt","r",stdin);
        int n;
        while(cin>>n&&n!=-1){
            for(int i=0;i<n;i++){
                scanf("%d%d",&p[i].x,&p[i].y);
            }
            convex(n);
            rotating();
          //  printf("%d
    ",rotating());
        }
        return 0;
    }
    

      








  • 相关阅读:
    SQL Server 索引基础知识(1) 记录数据的基本格式
    SQL语句优化技术分析
    AcceptEncoding: gzip,deflate
    用Delphi实现网络驱动器的映射和断开
    在DELPHI中HOOK程序的编写
    DelphiHookApi(经典)
    截获API
    窗体的扩展样式GWL_EXSTYLE:用于SetWindowLong
    delphi中WNetAddConnection2的使用
    Delphi中的线程类 TThread详解http://eelab.gxu.edu.cn/list.asp?unid=542
  • 原文地址:https://www.cnblogs.com/zhangbuang/p/11432425.html
Copyright © 2011-2022 走看看