zoukankan      html  css  js  c++  java
  • ural 1009. K-based Numbers

    Let’s consider K-based numbers, containing exactly N digits. We define a number to be valid if itsK-based notation doesn’t contain two successive zeros. For example:
    • 1010230 is a valid 7-digit number;
    • 1000198 is not a valid number;
    • 0001235 is not a 7-digit number, it is a 4-digit number.
    Given two numbers N and K, you are to calculate an amount of valid K based numbers, containing Ndigits.
    You may assume that 2 ≤ K ≤ 10; N ≥ 2; N + K ≤ 18.

    Input

    The numbers N and K in decimal notation separated by the line break.

    Output

    The result in decimal notation.

    Sample

    inputoutput
    2
    10
    
    90
    
    Problem Source: USU Championship 1997
     
     
    题意:比较简单的动态规划,题意是说一个K进制数,有N位,开头不能是0,中间不能有两个以上相邻的0
            问:求出n位的k进制数有多少个;
    思路:
           建立一个二维的数组dp[2][20];令dp[1][1]=k-1;
          然后有两个递归方程;(1).dp[0][i]=dp[1][i-1];表示从最高位起的第i位是0的前i位组成的数有多少种;dp[1][i]=(dp[0][i-1]+dp[1][i-1])*(k-1);表示从最高位起的第i位是非0数的前i位组成的数有多少种;
    AC代码:
     1 #include<iostream>
     2 #include<cstdio>
     3 
     4 using namespace std;
     5 
     6 int main()
     7 {
     8     int dp[2][20];
     9     int n,k;
    10     cin>>n>>k;
    11     int i,j;
    12     for(i=0;i<=1;i++)
    13         for(j=0;j<=k;j++)
    14         dp[i][j]=0;
    15     dp[1][1]=k-1;
    16     for(i=2;i<=n;i++)
    17     {
    18         dp[0][i]=dp[1][i-1];
    19         dp[1][i]=(k-1)*(dp[0][i-1]+dp[1][i-1]);
    20     }
    21     cout<<dp[0][n]+dp[1][n]<<endl;
    22     return 0;
    23 }
    View Code
     
     
     
  • 相关阅读:
    CodeForces
    HDU
    HDU
    POJ
    URAL
    POJ
    UVa
    UVa
    UVa
    UVa
  • 原文地址:https://www.cnblogs.com/zhangchengbing/p/3236539.html
Copyright © 2011-2022 走看看