zoukankan      html  css  js  c++  java
  • hdu5606 tree (并查集)

    tree

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 823    Accepted Submission(s): 394


    Problem Description
    There is a tree(the tree is a connected graph which contains n points and n1 edges),the points are labeled from 1 to n,which edge has a weight from 0 to 1,for every point i[1,n],you should find the number of the points which are closest to it,the clostest points can contain i itself.
     
    Input
    the first line contains a number T,means T test cases.

    for each test case,the first line is a nubmer n,means the number of the points,next n-1 lines,each line contains three numbers u,v,w,which shows an edge and its weight.

    T50,n105,u,v[1,n],w[0,1]
     
    Output
    for each test case,you need to print the answer to each point.

    in consideration of the large output,imagine ansi is the answer to point i,you only need to output,ans1 xor ans2 xor ans3.. ansn.
     
    Sample Input
    1 3 1 2 0 2 3 1
     
    Sample Output
    1 in the sample. $ans_1=2$ $ans_2=2$ $ans_3=1$ $2~xor~2~xor~1=1$,so you need to output 1.
     题意:n个节点的树,有的边权是1有的是0,是0表示距离近,而且比如1和2是0,1和3也是0,那么2和3之间也是0,转化为并查集,顺便路径压缩;
    AC代码:
    #include <iostream>
    #include <cstdio>
    #include <map>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    const int N=1e6+5;
    int flag[N],p[N];
    int findset(int x)
    {
        if(x!=p[x])return p[x]=findset(p[x]);
        return x;
    }
    int main()
    {
        int T,n,u,v,w;
        scanf("%d",&T);
        while(T--)
        {
           scanf("%d",&n);
           for(int i=1;i<=n;i++)
           {
               flag[i]=0;
               p[i]=i;
           }
           for(int i=0;i<n-1;i++)
           {
               scanf("%d%d%d",&u,&v,&w);
               if(w==0)
               {
                   int a=findset(u);
                   int b=findset(v);
                   p[a]=b;
               }
           }
           for(int i=1;i<=n;i++)
           {
               flag[findset(i)]++;
           }
           int ans=flag[findset(1)];
           for(int i=2;i<=n;i++)
           {
               ans=(ans^flag[findset(i)]);
           }
           printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    HTML5的智能提示在VisualStudio2010
    浏览器的缓存机制
    等待资源(wait_resource)解码(完整版)
    对quartz的总结
    利用Spring动态对Quartz定时任务管理
    Tomcat源码分析(一)服务启动
    深入分析 Java 中的中文编码问题
    企业搜索引擎开发之连接器connector(一)
    SpringQuartz (一)
    Quartz 项目应用笔记
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/5161917.html
Copyright © 2011-2022 走看看