zoukankan      html  css  js  c++  java
  • hdu-5656 CA Loves GCD(dp+数论)

    题目链接:

    CA Loves GCD

    Time Limit: 6000/3000 MS (Java/Others)   

     Memory Limit: 262144/262144 K (Java/Others)


    Problem Description
     
    CA is a fine comrade who loves the party and people; inevitably she loves GCD (greatest common divisor) too. 
    Now, there are N different numbers. Each time, CA will select several numbers (at least one), and find the GCD of these numbers. In order to have fun, CA will try every selection. After that, she wants to know the sum of all GCDs. 
    If and only if there is a number exists in a selection, but does not exist in another one, we think these two selections are different from each other.
     
    Input
     
    First line contains T denoting the number of testcases.
    T testcases follow. Each testcase contains a integer in the first time, denoting N, the number of the numbers CA have. The second line is N numbers. 
    We guarantee that all numbers in the test are in the range [1,1000].
    1T50
     
    Output
     
    T lines, each line prints the sum of GCDs mod 100000007.
     
    Sample Input
    2
    2
    2 4
    3
    1 2 3
     
    Sample Output
    8
    10
     
    题意:
     
    给n个数,问n个数的全组合的gcd的和是多少;
     
    思路:
     
    注意到数都在1000以内,所以把所以得组合都找出来,但是数量巨大所以相同的要压缩;
     
    AC代码:
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    ll dp[1003],num[1003],p[1003][1003];
    int n,a[1003];
    const ll mod=1e8+7;//注意是8,比赛的时候这个地方直接wa到cry
    int gcd(int x,int y)
    {
        if(y==0)return x;
        return gcd(y,x%y);
    }
    int main()
    {
        for(int i=1;i<=1000;i++)
        {
            for(int j=i;j<=1000;j++)
            {
                p[i][j]=gcd(i,j);
            }
        }
        int t;
        scanf("%d",&t);
        while(t--)
        {
            for(int i=1;i<=1000;i++)
            {
                num[i]=0;
            }
            ll ans=0;
            scanf("%d",&n);
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&a[i]);
            }
            sort(a+1,a+n+1);
            for(int i=1;i<=n;i++)
            {
                dp[i]=(ll)a[i];
                for(int j=1;j<=a[i];j++)
                {
                    if(num[j])
                    {
                        num[j]%=mod;
                        dp[i]+=num[j]*p[j][a[i]];//压缩的地方
                        dp[i]%=mod;
                        num[p[j][a[i]]]+=num[j];
                        num[p[j][a[i]]]%=mod;
                    }
                }
                num[a[i]]++;
                ans+=dp[i];
                ans%=mod;
            }
            cout<<ans<<"
    ";
        }
    
        return 0;
    }
     
  • 相关阅读:
    添加一个下拉框到DataGrid
    .NET2.0抓取网页全部链接 (转)
    C# 中 enum的总结
    NAT和NAT穿透
    [转]为什么在DllMain里不能调用LoadLibrary和FreeLibrary函数?
    Win32 SDK 创建加速键表。
    转了无数次。继续转。 就是关于TCP的侦活
    浅析Windows操作系统中的线程局部存储(TLS)机制
    API函数ShellExecute与ShellExecuteEx用法
    转:FreeLibraryAndExitThread DLL中线程的安全退出
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/5348422.html
Copyright © 2011-2022 走看看