zoukankan      html  css  js  c++  java
  • codeforces 664A A. Complicated GCD(水题)

    题目链接:

    A. Complicated GCD

    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output
     

    Greatest common divisor GCD(a, b) of two positive integers a and b is equal to the biggest integer d such that both integers a and bare divisible by d. There are many efficient algorithms to find greatest common divisor GCD(a, b), for example, Euclid algorithm.

    Formally, find the biggest integer d, such that all integers a, a + 1, a + 2, ..., b are divisible by d. To make the problem even more complicated we allow a and b to be up to googol, 10100 — such number do not fit even in 64-bit integer type!

    Input
     

    The only line of the input contains two integers a and b (1 ≤ a ≤ b ≤ 10100).

    Output
     

    Output one integer — greatest common divisor of all integers from a to b inclusive.

    Examples
     
    input
    1 2
    output
    1
    input
    61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576
    output
    61803398874989484820458683436563811772030917980576

    题意:

    [a,b]的最大公约数是多少;

    思路:

    可以发现,a和b不相同时的最大公约数是1,相同时是其本身;

    AC代码:

    /*2014300227    664A - 9    GNU C++11    Accepted    15 ms    4 KB*/
    #include <bits/stdc++.h>
    using namespace std;
    const int N=1e4+5;
    typedef long long ll;
    const int mod=1e9+7;
    char str1[110],str2[110];
    int check()
    {
        int len1=strlen(str1),len2=strlen(str2);
        if(len1==len2)
        {
            for(int i=0;i<len1;i++)
            {
                if(str1[i]!=str2[i])return 0;
            }
            return 1;
        }
        return 0;
    }
    int main()
    {
        scanf("%s%s",str1,str2);
        if(check())printf("%s
    ",str1);
        else printf("1
    ");
    
    
    
        return 0;
    }
  • 相关阅读:
    ionic 白名单
    简单的apk Ionic
    Ionic 小节
    Ionic学习笔记四 一些问题处理
    Android Platform Guide
    Android各个版本 版本号对应关系表
    JBPM4.4_管理流程定义
    JBPM4.4_核心概念与相关API
    工作流JBPM_day01:3-使用JBPM的API添加与执行流程
    工作流JBPM_day01:2-HelloWorld
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/5400556.html
Copyright © 2011-2022 走看看