zoukankan      html  css  js  c++  java
  • codeforces 414B B. Mashmokh and ACM(dp)

    题目链接:

    B. Mashmokh and ACM

    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following.

    A sequence of l integers b1, b2, ..., bl (1 ≤ b1 ≤ b2 ≤ ... ≤ bl ≤ n) is called good if each number divides (without a remainder) by the next number in the sequence. More formally  for all i (1 ≤ i ≤ l - 1).

    Given n and k find the number of good sequences of length k. As the answer can be rather large print it modulo 1000000007(10^9 + 7).

    Input
     

    The first line of input contains two space-separated integers n, k (1 ≤ n, k ≤ 2000).

    Output
     

    Output a single integer — the number of good sequences of length k modulo 1000000007 (10^9 + 7).

    Examples
     
    input
    3 2
    output
    5
    input
    6 4
    output
    39
    input
    2 1
    output
    2
    Note

    In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].

    题意

    给出这么多数[1,n],问能形成长为l的数列满足b[i]|b[i+1]的方案数;

    思路

    dp[i][j]表示长为i,以j结尾的方案数,

    dp[i+1][j]=∑dp[i][k],k为j的因数;

    AC代码

    #include <bits/stdc++.h>
    using namespace std;
    #define Riep(n) for(int i=1;i<=n;i++)
    #define Riop(n) for(int i=0;i<n;i++)
    #define Rjep(n) for(int j=1;j<=n;j++)
    #define Rjop(n) for(int j=0;j<n;j++)
    #define mst(ss,b) memset(ss,b,sizeof(ss));
    typedef long long LL;
    const LL mod=1e9+7;
    const double PI=acos(-1.0);
    const int inf=0x3f3f3f3f;
    const int N=2e5+6;
    LL dp[2002][2002];
    int main()
    {
            int n,k;
            scanf("%d%d",&n,&k);
            for(int i=1;i<=n;i++)
            {
                dp[1][i]=1;
            }
            for(int i=1;i<=k;i++)
            {
                Rjep(n)
                {
                    for(int x=1;x*j<=2000;x++)
                    {
                        dp[i+1][x*j]+=dp[i][j];
                        dp[i+1][x*j]%=mod;
                    }
                }
            }
            LL ans=0;
            for(int i=1;i<=n;i++)
            {
                ans+=dp[k][i];
                ans%=mod;
            }
            cout<<ans<<"
    ";
    
        return 0;
    }
  • 相关阅读:
    TreeView使用集锦
    net 下安装、调试的常见问题与错误及解决方法 [转]
    Oracle中使用同义词
    再推荐两个blog和一首好歌
    一点感慨
    推荐一个blog和一个工具
    买书了
    第一次做饭
    ORA00911错误及解决方法
    C#3.0美文收集
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/5461410.html
Copyright © 2011-2022 走看看