zoukankan      html  css  js  c++  java
  • hdu-1695 GCD(莫比乌斯反演)

    题目链接:

    GCD

    Time Limit: 6000/3000 MS (Java/Others)  

      Memory Limit: 32768/32768 K (Java/Others)


    Problem Description
     
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     
    Input
     
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     
    Output
     
    For each test case, print the number of choices. Use the format in the example.
     
    Sample Input
     
    2
    1 3 1 5 1
    1 11014 1 14409 9
     
    Sample Output
     
    Case 1: 9
    Case 2: 736427
     
     
    题意:
     
    求gcd(x,y)==k的(x,y)对数;1<=x<=b,1<=y<=d;
     
    思路:
     
    gcd(x,y)=k,即gcd(x/k,y/k)=1;
    变成求[1,b/k][1,d/k]中的互质的对数;
    f(d)表示gcd(x,y)=d的对数;F(d)表示d|gcd(x,y)的对数;
    这里求的是f(1);由莫比乌斯反演f(n)=∑(n|d)µ(d/n)F(d)知
    f(1)=∑µ(i)*F(i)   (1<=i<=min(b/k,d/k));
     
    AC代码:
     
     
  • 相关阅读:
    如何处理数集据不平衡的问题
    xgb&lgb&ctb区别
    LDA与gibbs采样
    撸了一个 Feign 增强包
    行为驱动模型-Behave
    MySQL 主从复制常见错误答疑
    POJ 1191
    POJ 1141
    HDU 1754
    POJ 3468
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/5634157.html
Copyright © 2011-2022 走看看