zoukankan      html  css  js  c++  java
  • hdu-5734 Acperience(数学)

    题目链接:

    Acperience

    Time Limit: 4000/2000 MS (Java/Others)

      Memory Limit: 65536/65536 K (Java/Others)


    Problem Description
     
    Deep neural networks (DNN) have shown significant improvements in several application domains including computer vision and speech recognition. In computer vision, a particular type of DNN, known as Convolutional Neural Networks (CNN), have demonstrated state-of-the-art results in object recognition and detection.

    Convolutional neural networks show reliable results on object recognition and detection that are useful in real world applications. Concurrent to the recent progress in recognition, interesting advancements have been happening in virtual reality (VR by Oculus), augmented reality (AR by HoloLens), and smart wearable devices. Putting these two pieces together, we argue that it is the right time to equip smart portable devices with the power of state-of-the-art recognition systems. However, CNN-based recognition systems need large amounts of memory and computational power. While they perform well on expensive, GPU-based machines, they are often unsuitable for smaller devices like cell phones and embedded electronics.

    In order to simplify the networks, Professor Zhang tries to introduce simple, efficient, and accurate approximations to CNNs by binarizing the weights. Professor Zhang needs your help.

    More specifically, you are given a weighted vector W=(w1,w2,...,wn). Professor Zhang would like to find a binary vector B=(b1,b2,...,bn) (bi{+1,1}) and a scaling factor α0 in such a manner that WαB2 is minimum.

    Note that  denotes the Euclidean norm (i.e. X=x21++x2n−−−−−−−−−−−√, where X=(x1,x2,...,xn)).
     
    Input
     
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

    The first line contains an integers n (1n100000) -- the length of the vector. The next line contains n integers: w1,w2,...,wn (10000wi10000).
     
    Output
    For each test case, output the minimum value of WαB2 as an irreducible fraction "p/q" where pq are integers, q>0.
     
    Sample Input
     
    3
    4
    1 2 3 4
    4
    2 2 2 2
    5
    5 6 2 3 4
     
    Sample Output
     
    5/1
    0/1
    10/1
     
    题意:
     
    问∑(w[i]+x[i]*a)^2最小是多少?x[i]=1或-1;a>0;
     
    思路:
     
    ∑(w[i]+x[i]*a)^2=∑w[i]^2+n*a^2+2*a*∑x[i]w[i];
     
    ∑w[i]^2是常数,现在变成了一个一元二次函数,找出它的最小值;
    根据二次函数的的性质,∑x[i]w[i]尽量大,所以就很简单了;
     
    AC代码:
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <bits/stdc++.h>
    #include <stack>
    
    using namespace std;
    
    #define For(i,j,n) for(int i=j;i<=n;i++)
    #define mst(ss,b) memset(ss,b,sizeof(ss));
    
    typedef  long long LL;
    
    template<class T> void read(T&num) {
        char CH; bool F=false;
        for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
        for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
        F && (num=-num);
    }
    int stk[70], tp;
    template<class T> inline void print(T p) {
        if(!p) { puts("0"); return; }
        while(p) stk[++ tp] = p%10, p/=10;
        while(tp) putchar(stk[tp--] + '0');
        putchar('
    ');
    }
    
    const LL mod=1e9+7;
    const double PI=acos(-1.0);
    const int inf=1e9;
    const int N=1e5+10;
    const int maxn=500+10;
    const double eps=1e-6;
    
    int a[N],n;
    LL sum=0,ans=0;
     LL gcd(LL x,LL y)
     {
         if(y==0)return x;
         return gcd(y,x%y);
     }
    int main()
    {
            int t;
            read(t);
            while(t--)
            {
                read(n);
                sum=0,ans=0;
                For(i,1,n)
                {
                    read(a[i]);
                    sum=sum+(LL)a[i]*a[i];
                    if(a[i]<0)ans=ans-a[i];
                    else ans=ans+a[i];
                }
                LL x=(LL)n;
                LL g=gcd(x*sum-ans*ans,x);
                cout<<(x*sum-ans*ans)/g<<"/"<<x/g<<endl;
    
    
            }
            return 0;
    }
    

      

     
  • 相关阅读:
    关于《注意力模型--Attention注意力机制》的学习
    神经网络参数计算
    FPN(feature pyramid networks)算法讲解
    RetinaNet-focal loss
    论文阅读: RetinaNet
    CNN+LSTM:看图说话
    非极大值抑制-NMS
    python IO文件操作 file文件操作
    软件测试定义 分类
    软件生命周期
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/5692885.html
Copyright © 2011-2022 走看看