题目链接:
Claris and XOR
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 65536/65536 K (Java/Others)
Problem Description
Claris loves bitwise operations very much, especially XOR, because it has many beautiful features. He gets four positive integers a,b,c,d that satisfies a≤b and c≤d. He wants to choose two integers x,y that satisfies a≤x≤b and c≤y≤d, and maximize the value of x XOR y. But he doesn't know how to do it, so please tell him the maximum value of x XOR y.
Input
The first line contains an integer T(1≤T≤10,000)——The number of the test cases.
For each test case, the only line contains four integers a,b,c,d(1≤a,b,c,d≤1018). Between each two adjacent integers there is a white space separated.
For each test case, the only line contains four integers a,b,c,d(1≤a,b,c,d≤1018). Between each two adjacent integers there is a white space separated.
Output
For each test case, the only line contains a integer that is the maximum value of x XOR y.
Sample Input
2
1 2 3 4
5 7 13 15
Sample Output
6
11
题意:
问a<=x<=b,c<=y<=d;最大的x^y的值是多少;
思路:
贪心,从高位到低位,能取到1的取1不能的取0,同时更新a,b,c,d的值;
AC代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <bits/stdc++.h> #include <stack> #include <map> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++) #define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) { char CH; bool F=false; for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar()); for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar()); F && (num=-num); } int stk[70], tp; template<class T> inline void print(T p) { if(!p) { puts("0"); return; } while(p) stk[++ tp] = p%10, p/=10; while(tp) putchar(stk[tp--] + '0'); putchar(' '); } const LL mod=1e9+7; const double PI=acos(-1.0); const int inf=1e18; const int N=1e5+10; const int maxn=5e3+4; const double eps=1e-12; LL a,b,c,d; int main() { //freopen("in.txt","r",stdin); int T; read(T); while(T--) { read(a);read(b);read(c);read(d); LL ans=0; for(int i=63;i>=0;i--) { int fa=((a>>i)&1),fb=((b>>i)&1),fc=((c>>i)&1),fd=((d>>i)&1); if(fa!=fb&&fc!=fd){ans|=(1LL<<(i+1))-1;break;} else if(fa!=fb) { ans|=(1LL<<i); if(fc) { b=(1LL<<i)-1; c-=(1LL<<i); d-=(1LL<<i); } else { a=0; b-=(1LL<<i); } } else if(fc!=fd) { ans|=(1LL<<i); if(fa) { d=(1LL<<i)-1; a-=(1LL<<i); b-=(1LL<<i); } else { c=0; d-=(1LL<<i); } } else { if(fa==fc) { if(fa) { LL temp=(1LL<<i); a-=temp; b-=temp; c-=temp; d-=temp; } } else { ans|=(1LL<<i); if(fa) { a-=(1LL<<i); b-=(1LL<<i); } else { c-=(1LL<<i); d-=(1LL<<i); } } } } print(ans); } return 0; }