题目链接:
Find an n × n matrix with different numbers from 1 to n2, so the sum in each row, column and both main diagonals are odd.
Input
The only line contains odd integer n (1 ≤ n ≤ 49).
Output
Print n lines with n integers. All the integers should be different and from 1 to n2. The sum in each row, column and both main diagonals should be odd.
Examples
input
1
output
1
input
3
output
2 1 4
3 5 7
6 9 8
题意:
找出一个n*n的矩阵,这里面的数是一个[1,n*n]的全排列,要求所有行所有列的和为奇数;n为奇数;
思路:
可以发现n为奇数的时候就是每行每列的个数都是奇数,所有每行每列里面的奇数的个数都是奇数,所有就可以想到中间是一个奇数组成的45度的正方形,其他是偶数;正好用完了所有的偶数和奇数;
AC代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <bits/stdc++.h> #include <stack> #include <map> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++) #define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) { char CH; bool F=false; for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar()); for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar()); F && (num=-num); } int stk[70], tp; template<class T> inline void print(T p) { if(!p) { puts("0"); return; } while(p) stk[++ tp] = p%10, p/=10; while(tp) putchar(stk[tp--] + '0'); putchar(' '); } const LL mod=1e9+7; const double PI=acos(-1.0); const int inf=1e9; const int N=3e5+10; const int maxn=1e3+20; const double eps=1e-12; int ans[50][50]; int main() { int n; read(n); int cnt1=1,cnt2=2,cx=n/2+1,cy=n/2+1; for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { if(abs(cx-i)+abs(cy-j)<=n/2)ans[i][j]=cnt1,cnt1+=2; else ans[i][j]=cnt2,cnt2+=2; } } for(int i=1;i<=n;i++) { for(int j=1;j<n;j++)printf("%d ",ans[i][j]); printf("%d ",ans[i][n]); } return 0; }