zoukankan      html  css  js  c++  java
  • hdu-5794 A Simple Chess(容斥+lucas+dp)

    题目链接:

    A Simple Chess

    Time Limit: 2000/1000 MS (Java/Others)   

     Memory Limit: 65536/65536 K (Java/Others)


    Problem Description
    There is a n×m board, a chess want to go to the position 
    (n,m) from the position (1,1).
    The chess is able to go to position (x2,y2) from the position (x1,y1), only and if only x1,y1,x2,y2 is satisfied that (x2x1)2+(y2y1)2=5, x2>x1, y2>y1.
    Unfortunately, there are some obstacles on the board. And the chess never can stay on the grid where has a obstacle.
    I want you to tell me, There are how may ways the chess can achieve its goal.
     
    Input
    The input consists of multiple test cases.
    For each test case:
    The first line is three integers, n,m,r,(1n,m1018,0r100), denoting the height of the board, the weight of the board, and the number of the obstacles on the board.
    Then follow r lines, each lines have two integers, x,y(1xn,1ym), denoting the position of the obstacles. please note there aren't never a obstacles at position (1,1).
     
    Output
    For each test case,output a single line "Case #x: y", where x is the case number, starting from 1. And y is the answer after module 110119.
     
    Sample Input
     
    1 1 0
    3 3 0
    4 4 1
    2 1
    4 4 1
    3 2
    7 10 2
    1 2
    7 1
     
    Sample Output
     
    Case #1: 1
    Case #2: 0
    Case #3: 2
    Case #4: 1
    Case #5: 5
     
     
    题意:
     
    走日字从(1,1)到(n,m)且不经过障碍的方案数;
     
    思路:
     
    原来向下和向右移动的方案数是C(n+m,m),这个是先把日字变成原来熟悉的走法,可以画个图研究一下,最后发现是(0,0)到(2*fy-fx/3,2*fx-fy/3)的方案数
    不经过障碍可以用容斥加dp解决,dp[i]表示从起点到达第i个点中间不经过障碍点的方案数,那么dp[i]=起点到达i的总方案数-∑dp[j]*(j点到达i点的总方案数)
    还有就是要预处理出阶乘,同时n和m都太大要用lucas定理化简,C(n,m)%mod=C(n/mod,m/mod)*C(n%mod,m%mod)%mod;
     
    AC代码:
    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const LL mod=110119;
    const int maxn=110;
    LL n,m,x[maxn],y[maxn],dp[maxn],p[110130];
    int r;
    inline void init()
    {
        p[0]=1;
        for(int i=1;i<=110119;i++)p[i]=p[i-1]*(LL)i%mod;
    }
    LL pow_mod(LL a,LL b)
    {
        LL s=1,base=a;
        while(b)
        {
            if(b&1)s=s*base%mod;
            base=base*base%mod;
            b>>=1;
        }
        return s;
    }
    LL cal(LL a,LL b)
    {
        if(a<mod&&b<mod)
        {
            if(b>a)return 0;
            return p[a]*pow_mod(p[b],mod-2)%mod*pow_mod(p[a-b],mod-2)%mod;
        }
        return cal(a/mod,b/mod)*cal(a%mod,b%mod)%mod;
    }
    LL solve(int L,int R)
    {
        LL fx=x[R]-x[L],fy=y[R]-y[L];
        if((2*fy-fx)%3||(2*fx-fy)%3||2*fy<fx||2*fx<fy)return 0;
        LL up=(2*fy-fx)/3,down=(fx+fy)/3;
        return cal(down,up);
    }
    int main()
    {
        init();
        int Case=0;
        while(scanf("%lld%lld%d",&n,&m,&r)!=EOF)
        {
            memset(dp,0,sizeof(dp));
            int flag=0;
            x[0]=1,y[0]=1;
            for(int i=1;i<=r;i++)
            {
                scanf("%lld%lld",&x[i],&y[i]);
                if(x[i]==n&&y[i]==m)flag=1;
            }
            LL ans=0;
            if(!flag)
            {
                x[0]=1,y[0]=1;
                dp[0]=1;
                x[++r]=n,y[r]=m;
                for(int i=1;i<=r;i++)
                {
                    for(int j=1;j<=i;j++)
                    {
                        if(x[j]>=x[i]&&y[j]>=y[i])swap(x[i],x[j]),swap(y[i],y[j]);
                    }
                }
                for(int i=1;i<=r;i++)dp[i]=solve(0,i);
                for(int i=1;i<=r;i++)
                {
                    for(int j=1;j<i;j++)
                    {
                        if(x[j]<=x[i]&&y[j]<=y[i])dp[i]=(dp[i]-dp[j]*solve(j,i)%mod+mod)%mod;
                    }
                }
                for(int i=1;i<=r;i++)if(x[i]==n&&y[i]==m)ans=dp[i];
            }
            printf("Case #%d: %lld
    ",++Case,ans);
        }
        return 0;
    }
    

      

     
  • 相关阅读:
    C#中回滚TransactionScope的使用方法和原理
    CAS5.3服务器搭建与客户端整合SpringBoot以及踩坑笔记
    JSON对象、JSON字符串和Java对象互相转
    Java实体类如何映射到json数据(驼峰映射到json中的下划线)
    expected at least 1 bean which qualifies as autowire candidate
    IDEA target中没有class文件/target中有class没有yml文件/yml文件不显示叶子
    yml配置从nacos配置中心取数据(单个或多个),读读源码,寻找如何配置多个
    seata-server 1.3.0整合nacos,使用nacos做注册和配置中心
    简单读读源码
    mybatis-plus.global-config.db-config.id-type=auto 和 @TableId(value = "id", type = IdType.ASSIGN_ID)哪个优先生效
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/6286327.html
Copyright © 2011-2022 走看看