zoukankan      html  css  js  c++  java
  • B. Clique Problem(贪心)

    题目链接:

    B. Clique Problem

    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    The clique problem is one of the most well-known NP-complete problems. Under some simplification it can be formulated as follows. Consider an undirected graph G. It is required to find a subset of vertices C of the maximum size such that any two of them are connected by an edge in graph G. Sounds simple, doesn't it? Nobody yet knows an algorithm that finds a solution to this problem in polynomial time of the size of the graph. However, as with many other NP-complete problems, the clique problem is easier if you consider a specific type of a graph.

    Consider n distinct points on a line. Let the i-th point have the coordinate xi and weight wi. Let's form graph G, whose vertices are these points and edges connect exactly the pairs of points (i, j), such that the distance between them is not less than the sum of their weights, or more formally: |xi - xj| ≥ wi + wj.

    Find the size of the maximum clique in such graph.

    Input

    The first line contains the integer n (1 ≤ n ≤ 200 000) — the number of points.

    Each of the next n lines contains two numbers xiwi (0 ≤ xi ≤ 109, 1 ≤ wi ≤ 109) — the coordinate and the weight of a point. All xi are different.

    Output

    Print a single number — the number of vertexes in the maximum clique of the given graph.

    Examples
    input
    4
    2 3
    3 1
    6 1
    0 2
    output
    3

    题意:满足上面的式子的点对连一条边,问连完边后最大独立团的点数是多少;
    思路:假设xi>=xj,那么xi-wi>=xj+wj,那么按x排序后,对于每一个点就可以与<=xi-wi区间的点相连(这些点区间假设为[l,r]),
    那么[l,r]区间的最大团数目加1就可以更新当前点的值了;
    AC代码:
    #include <bits/stdc++.h>
    using namespace std;
    const int maxn=2e5+10;
    int n,dp[maxn];
    std::vector<int> ve;
    struct node
    {
        int x,w;
    }po[maxn];
    int cmp(node a,node b){return a.x<b.x;}
    struct Tree
    {
        int l,r,mx;
    }tr[4*maxn];
    void build(int o,int L,int R)
    {
        tr[o].l=L;tr[o].r=R;tr[o].mx=1;
        if(L>=R)return ;
        int mid=(tr[o].l+tr[o].r)>>1;
        build(2*o,L,mid);build(2*o+1,mid+1,R);
    }
    int query(int o,int L,int R)
    {
        if(L<=tr[o].l&&R>=tr[o].r)return tr[o].mx;
        int ans=0;
        int mid=(tr[o].l+tr[o].r)>>1;
        if(L<=mid)ans=max(ans,query(2*o,L,R));
        if(R>mid)ans=max(ans,query(2*o+1,L,R));
        return ans;
    }
    void update(int o,int pos,int num)
    {
        if(tr[o].l==tr[o].r&&tr[o].l==pos){tr[o].mx=num;return ;}
        int mid=(tr[o].l+tr[o].r)>>1;
        if(pos<=mid)update(2*o,pos,num);
        else update(2*o+1,pos,num);
        tr[o].mx=max(tr[2*o].mx,tr[2*o+1].mx);
    }
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)scanf("%d%d",&po[i].x,&po[i].w),ve.push_back(po[i].x+po[i].w),dp[i]=1;
        sort(po+1,po+n+1,cmp);
        sort(ve.begin(),ve.end());
        build(1,1,n);
        for(int i=1;i<=n;i++)
        {
            int tep=po[i].x-po[i].w;
            int pos=upper_bound(ve.begin(),ve.end(),tep)-ve.begin();
            int p=lower_bound(ve.begin(),ve.end(),po[i].x+po[i].w)-ve.begin()+1;
            if(pos>0)dp[p]=max(dp[p],query(1,1,pos)+1);
            update(1,p,dp[p]);
        }
        printf("%d
    ",query(1,1,n));
        return 0;
    }
    

      

     
  • 相关阅读:
    将表单赋予对对象
    sql server 锁
    设置SQL server服务器的dbo架构
    用ILSpy查看Session.SessionID的生成算法
    c#3.0新特性
    解决文件上传插件Uploadify在火狐浏览器下,Session丢失的问题
    VS2012 集成 IL DASM IL微软中间语言查看器
    认识
    操作符重载
    博客搬家了
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/6854084.html
Copyright © 2011-2022 走看看