zoukankan      html  css  js  c++  java
  • B. Clique Problem(贪心)

    题目链接:

    B. Clique Problem

    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    The clique problem is one of the most well-known NP-complete problems. Under some simplification it can be formulated as follows. Consider an undirected graph G. It is required to find a subset of vertices C of the maximum size such that any two of them are connected by an edge in graph G. Sounds simple, doesn't it? Nobody yet knows an algorithm that finds a solution to this problem in polynomial time of the size of the graph. However, as with many other NP-complete problems, the clique problem is easier if you consider a specific type of a graph.

    Consider n distinct points on a line. Let the i-th point have the coordinate xi and weight wi. Let's form graph G, whose vertices are these points and edges connect exactly the pairs of points (i, j), such that the distance between them is not less than the sum of their weights, or more formally: |xi - xj| ≥ wi + wj.

    Find the size of the maximum clique in such graph.

    Input

    The first line contains the integer n (1 ≤ n ≤ 200 000) — the number of points.

    Each of the next n lines contains two numbers xiwi (0 ≤ xi ≤ 109, 1 ≤ wi ≤ 109) — the coordinate and the weight of a point. All xi are different.

    Output

    Print a single number — the number of vertexes in the maximum clique of the given graph.

    Examples
    input
    4
    2 3
    3 1
    6 1
    0 2
    output
    3

    题意:满足上面的式子的点对连一条边,问连完边后最大独立团的点数是多少;
    思路:假设xi>=xj,那么xi-wi>=xj+wj,那么按x排序后,对于每一个点就可以与<=xi-wi区间的点相连(这些点区间假设为[l,r]),
    那么[l,r]区间的最大团数目加1就可以更新当前点的值了;
    AC代码:
    #include <bits/stdc++.h>
    using namespace std;
    const int maxn=2e5+10;
    int n,dp[maxn];
    std::vector<int> ve;
    struct node
    {
        int x,w;
    }po[maxn];
    int cmp(node a,node b){return a.x<b.x;}
    struct Tree
    {
        int l,r,mx;
    }tr[4*maxn];
    void build(int o,int L,int R)
    {
        tr[o].l=L;tr[o].r=R;tr[o].mx=1;
        if(L>=R)return ;
        int mid=(tr[o].l+tr[o].r)>>1;
        build(2*o,L,mid);build(2*o+1,mid+1,R);
    }
    int query(int o,int L,int R)
    {
        if(L<=tr[o].l&&R>=tr[o].r)return tr[o].mx;
        int ans=0;
        int mid=(tr[o].l+tr[o].r)>>1;
        if(L<=mid)ans=max(ans,query(2*o,L,R));
        if(R>mid)ans=max(ans,query(2*o+1,L,R));
        return ans;
    }
    void update(int o,int pos,int num)
    {
        if(tr[o].l==tr[o].r&&tr[o].l==pos){tr[o].mx=num;return ;}
        int mid=(tr[o].l+tr[o].r)>>1;
        if(pos<=mid)update(2*o,pos,num);
        else update(2*o+1,pos,num);
        tr[o].mx=max(tr[2*o].mx,tr[2*o+1].mx);
    }
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)scanf("%d%d",&po[i].x,&po[i].w),ve.push_back(po[i].x+po[i].w),dp[i]=1;
        sort(po+1,po+n+1,cmp);
        sort(ve.begin(),ve.end());
        build(1,1,n);
        for(int i=1;i<=n;i++)
        {
            int tep=po[i].x-po[i].w;
            int pos=upper_bound(ve.begin(),ve.end(),tep)-ve.begin();
            int p=lower_bound(ve.begin(),ve.end(),po[i].x+po[i].w)-ve.begin()+1;
            if(pos>0)dp[p]=max(dp[p],query(1,1,pos)+1);
            update(1,p,dp[p]);
        }
        printf("%d
    ",query(1,1,n));
        return 0;
    }
    

      

     
  • 相关阅读:
    textarea中的空格与换行
    js判断微信内置浏览器
    关于express4不再支持body-parser
    html5 geolocation API
    屏幕密度与分辨率
    nodebeginer
    手机浏览器下IScroll中click事件
    iphone手机上的click和touch
    AngularJS学习笔记一
    不用bootstrap实现居中适应
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/6854084.html
Copyright © 2011-2022 走看看