zoukankan      html  css  js  c++  java
  • 读书笔记:机器学习实战(1)——章2的knn代码和个人改进与注释

    最近在学习《机器学习实战》一书,受益匪浅,之前还看过本书《机器学习系统设计》也很不错,个人觉得前者更注重算法学习和白盒代码优化(原理理解),而后者更注重skit-learn 等工具包的黑盒使用,更重要的是会指导部分工具算法使用的调优trick,提到机器学习的trick调优,比如early-stoping等,《Neural networks and deep learning》中讲授了很多精华,但是目前我只有电子版,同时鉴于英文功底,暂时还没详读。
    言归正传,这是我学习《Machine Learning in Action》,对于第二章inn代码的个人理解,python代码学习备注,和一些小的调优尝试

    #!/usr/bin/env python
    # coding=utf-8
    __author__ = 'zhangdebin'
    from numpy import *
    import operator
    from os import listdir
    import time
    
    def classify0(inX, dataSet, labels, k):
        dataSetSize = dataSet.shape[0]
        diffMat = tile(inX, (dataSetSize,1)) - dataSet
        # 以测试数据为基础,构造一个 dataSetSize*1的矩阵,和所有测试数据的矩阵进行求差(曼哈顿距离,L1)
        sqDiffMat = diffMat**2
        # sqDistances = sqDiffMat.sum(axis=1)
        sqDistances = transpose(sqDiffMat)[:,0]
        # 原书代码为按行求和,axis=0为按列,这里觉得也可以转置矩阵,因为每行只有1列,
        # 但是转置后是一个[[1,2,3]]的“多列”矩阵,需要提取数组的第一列
        # 测试证明这样操作计算更快,耗时由0.047降低为0.023
        distances = sqDistances**0.5
        # L2,欧式距离
        sortedDistIndicies = distances.argsort() #返回distances数组从小到大的索引
        classCount={}          
        for i in range(k):
            voteIlabel = labels[sortedDistIndicies[i]]
            classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
        sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
        #reverse=True 从小到大排序,默认为从大到小(False) key和cmp两种比较方式,但是key更快,详见印象笔记(sort and sorted)
        return sortedClassCount[0][0]
    
    def createDataSet():
        group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
        labels = ['A','A','B','B']
        return group, labels
    
    def file2matrix(filename):
        fr = open(filename)
        numberOfLines = len(fr.readlines())         #get the number of lines in the file
        returnMat = zeros((numberOfLines,3))        #prepare matrix to return
        classLabelVector = []                       #prepare labels return   
        fr = open(filename)
        index = 0
        for line in fr.readlines():
            line = line.strip()
            listFromLine = line.split('	')
            returnMat[index,:] = listFromLine[0:3]
            classLabelVector.append(int(listFromLine[-1]))
            index += 1
        return returnMat,classLabelVector
    
    def autoNorm(dataSet):
        minVals = dataSet.min(0)
        maxVals = dataSet.max(0)
        ranges = maxVals - minVals
        normDataSet = zeros(shape(dataSet))
        m = dataSet.shape[0]
        normDataSet = dataSet - tile(minVals, (m,1))
        normDataSet = normDataSet/tile(ranges, (m,1))   #element wise divide
        return normDataSet, ranges, minVals
    
    def datingClassTest():
        hoRatio = 0.50      #hold out 10%测试集百分比
        datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')       #load data setfrom file
        normMat, ranges, minVals = autoNorm(datingDataMat)
        m = normMat.shape[0]
        numTestVecs = int(m*hoRatio)
        errorCount = 0.0
        for i in range(numTestVecs):
            classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
            # k逐渐增大,准确率会有一定增长,因为是矩阵对所有做差,求和(L2),所以k增加,计算耗时增加很少,本机测ms级
            print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
            if (classifierResult != datingLabels[i]): errorCount += 1.0
        print "the total error rate is: %f" % (errorCount/float(numTestVecs))
        print errorCount
    
    def img2vector(filename):
        returnVect = zeros((1,1024))
        fr = open(filename)
        for i in range(32):
            lineStr = fr.readline()
            for j in range(32):
                returnVect[0,32*i+j] = int(lineStr[j])
        return returnVect
    
    def handwritingClassTest():
        hwLabels = []
        trainingFileList = listdir('trainingDigits')           #load the training set
        m = len(trainingFileList)
        trainingMat = zeros((m,1024))
        for i in range(m):
            fileNameStr = trainingFileList[i]
            fileStr = fileNameStr.split('.')[0]     #take off .txt
            classNumStr = int(fileStr.split('_')[0])
            hwLabels.append(classNumStr)
            trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
        testFileList = listdir('testDigits')        #iterate through the test set
        errorCount = 0.0
        mTest = len(testFileList)
        for i in range(mTest):
            fileNameStr = testFileList[i]
            fileStr = fileNameStr.split('.')[0]     #take off .txt
            classNumStr = int(fileStr.split('_')[0])
            vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
            classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
            print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
            if (classifierResult != classNumStr): errorCount += 1.0
        print "
    the total number of errors is: %d" % errorCount
        print "
    the total error rate is: %f" % (errorCount/float(mTest))
    
    if  __name__ == '__main__':
        time1=time.time()
        datingClassTest()
        time2=time.time()
        print "耗时:"
        print (time2-time1)

    其他学习笔记会陆续补充,还有一些工作时候的个人实践

  • 相关阅读:
    MySQL--自增列持久化问题
    MySQL--”自然键”和”代理键”优缺点
    MySQL--REPLACE INTO更新自增列值引发的异常
    MySQL Inception--原理和注意事项
    MySQL Inception--安装
    MySQL--关联更新
    MySQL--Delete语句别名+LIMIT
    MySQL Disk--SSD 特性
    BootStrap简介
    BootStrap简单使用
  • 原文地址:https://www.cnblogs.com/zhangdebin/p/5567925.html
Copyright © 2011-2022 走看看