最近在学习《机器学习实战》一书,受益匪浅,之前还看过本书《机器学习系统设计》也很不错,个人觉得前者更注重算法学习和白盒代码优化(原理理解),而后者更注重skit-learn 等工具包的黑盒使用,更重要的是会指导部分工具算法使用的调优trick,提到机器学习的trick调优,比如early-stoping等,《Neural networks and deep learning》中讲授了很多精华,但是目前我只有电子版,同时鉴于英文功底,暂时还没详读。
言归正传,这是我学习《Machine Learning in Action》,对于第二章inn代码的个人理解,python代码学习备注,和一些小的调优尝试
#!/usr/bin/env python
# coding=utf-8
__author__ = 'zhangdebin'
from numpy import *
import operator
from os import listdir
import time
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
# 以测试数据为基础,构造一个 dataSetSize*1的矩阵,和所有测试数据的矩阵进行求差(曼哈顿距离,L1)
sqDiffMat = diffMat**2
# sqDistances = sqDiffMat.sum(axis=1)
sqDistances = transpose(sqDiffMat)[:,0]
# 原书代码为按行求和,axis=0为按列,这里觉得也可以转置矩阵,因为每行只有1列,
# 但是转置后是一个[[1,2,3]]的“多列”矩阵,需要提取数组的第一列
# 测试证明这样操作计算更快,耗时由0.047降低为0.023
distances = sqDistances**0.5
# L2,欧式距离
sortedDistIndicies = distances.argsort() #返回distances数组从小到大的索引
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
#reverse=True 从小到大排序,默认为从大到小(False) key和cmp两种比较方式,但是key更快,详见印象笔记(sort and sorted)
return sortedClassCount[0][0]
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels
def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) #get the number of lines in the file
returnMat = zeros((numberOfLines,3)) #prepare matrix to return
classLabelVector = [] #prepare labels return
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip()
listFromLine = line.split(' ')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1)) #element wise divide
return normDataSet, ranges, minVals
def datingClassTest():
hoRatio = 0.50 #hold out 10%测试集百分比
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #load data setfrom file
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
# k逐渐增大,准确率会有一定增长,因为是矩阵对所有做差,求和(L2),所以k增加,计算耗时增加很少,本机测ms级
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
if (classifierResult != datingLabels[i]): errorCount += 1.0
print "the total error rate is: %f" % (errorCount/float(numTestVecs))
print errorCount
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits') #load the training set
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits') #iterate through the test set
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
if (classifierResult != classNumStr): errorCount += 1.0
print "
the total number of errors is: %d" % errorCount
print "
the total error rate is: %f" % (errorCount/float(mTest))
if __name__ == '__main__':
time1=time.time()
datingClassTest()
time2=time.time()
print "耗时:"
print (time2-time1)
其他学习笔记会陆续补充,还有一些工作时候的个人实践