A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. A maximal clique is a clique that cannot be extended by including one more adjacent vertex. (Quoted from https://en.wikipedia.org/wiki/Clique_(graph_theory))
Now it is your job to judge if a given subset of vertices can form a maximal clique.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers Nv (≤ 200), the number of vertices in the graph, and Ne, the number of undirected edges. Then Ne lines follow, each gives a pair of vertices of an edge. The vertices are numbered from 1 to Nv.
After the graph, there is another positive integer M (≤ 100). Then M lines of query follow, each first gives a positive number K (≤ Nv), then followed by a sequence of K distinct vertices. All the numbers in a line are separated by a space.
Output Specification:
For each of the M queries, print in a line Yes
if the given subset of vertices can form a maximal clique; or if it is a clique but not a maximal clique, print Not Maximal
; or if it is not a clique at all, print Not a Clique
.
Sample Input:
8 10
5 6
7 8
6 4
3 6
4 5
2 3
8 2
2 7
5 3
3 4
6
4 5 4 3 6
3 2 8 7
2 2 3
1 1
3 4 3 6
3 3 2 1
Sample Output:
Yes Yes Yes Yes Not Maximal Not a Clique
思路:
题目大意是给定一个顶点数组,
1)如果该数组内的点之间不是两两直接连接,输出Not a Clique
2)如果1)为真,判断给出的数组是否是最大,如果是输出Yes,不是输出Not Maximal。
根据题意使用邻接矩阵进行存储图(这样判断两个顶点之间是否直接连接很方便)。
#include<iostream> #include<vector> #include<algorithm> #include<queue> #include<string> #include<map> #include<set> #include<stack> #include<string.h> #include<cstdio> #include<cmath> using namespace std; int graph[201][201]; void judge(int a[],int k,int n) { bool visited[n+1]; fill(visited,visited+n+1,true); for(int i=0;i<k;i++) { int temp1=a[i]; visited[temp1]=false; for(int j=i+1;j<k;j++) { int temp2=a[j]; if(graph[temp1][temp2]==0) { printf("Not a Clique "); return; } } } for(int i=1;i<n+1;i++) { if(visited[i]) { bool flag=true; for(int j=0;j<k;j++) { if(graph[i][a[j]]==0) flag=false; } if(flag) { printf("Not Maximal "); return; } } } printf("Yes "); } int main() { int n,m; cin>>n>>m; // graph.resize(n+1); for(int i=0;i<m;i++) { int start,endL; cin>>start>>endL; //graph[start].push_back(start); graph[start][endL]=1; graph[endL][start]=1; // graph[endL].push_back(endL); } cin>>m; for(int i=0;i<m;i++) { int k; cin>>k; int temp[k]; for(int j=0;j<k;j++) { int a; cin>>a; temp[j]=a; } judge(temp,k,n); } return 0; }