zoukankan      html  css  js  c++  java
  • 1142 Maximal Clique (25 分)图

    1142 Maximal Clique (25 分)

    A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. A maximal clique is a clique that cannot be extended by including one more adjacent vertex. (Quoted from https://en.wikipedia.org/wiki/Clique_(graph_theory))

    Now it is your job to judge if a given subset of vertices can form a maximal clique.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives two positive integers Nv (≤ 200), the number of vertices in the graph, and Ne, the number of undirected edges. Then Ne lines follow, each gives a pair of vertices of an edge. The vertices are numbered from 1 to Nv.

    After the graph, there is another positive integer M (≤ 100). Then M lines of query follow, each first gives a positive number K (≤ Nv), then followed by a sequence of K distinct vertices. All the numbers in a line are separated by a space.

    Output Specification:

    For each of the M queries, print in a line Yes if the given subset of vertices can form a maximal clique; or if it is a clique but not a maximal clique, print Not Maximal; or if it is not a clique at all, print Not a Clique.

    Sample Input:

    8 10
    5 6
    7 8
    6 4
    3 6
    4 5
    2 3
    8 2
    2 7
    5 3
    3 4
    6
    4 5 4 3 6
    3 2 8 7
    2 2 3
    1 1
    3 4 3 6
    3 3 2 1
    

    Sample Output:

    Yes
    Yes
    Yes
    Yes
    Not Maximal
    Not a Clique
    思路:
      题目大意是给定一个顶点数组,
                   1)如果该数组内的点之间不是两两直接连接,输出Not a Clique
                   2)如果1)为真,判断给出的数组是否是最大,如果是输出Yes,不是
      输出Not Maximal。
      根据题意使用邻接矩阵进行存储图(这样判断两个顶点之间是否直接连接很方便)。
    #include<iostream>
    #include<vector>
    #include<algorithm>
    #include<queue>
    #include<string>
    #include<map>
    #include<set>
    #include<stack>
    #include<string.h>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    
    int graph[201][201];
    
    void judge(int a[],int k,int n)
    {
        bool visited[n+1];
        fill(visited,visited+n+1,true);
    
        for(int i=0;i<k;i++)
        {
    
            int temp1=a[i];
            visited[temp1]=false;
            for(int j=i+1;j<k;j++)
            {
                int temp2=a[j];
                if(graph[temp1][temp2]==0)
                {
                    printf("Not a Clique
    ");
                    return;
                }
            }
        }
        for(int i=1;i<n+1;i++)
        {
            if(visited[i])
            {
                bool flag=true;
                for(int j=0;j<k;j++)
                {
                    if(graph[i][a[j]]==0)
                        flag=false;
                }
                if(flag)
                {
                    printf("Not Maximal
    ");
                    return;
                }
            }
        }
    
        printf("Yes
    ");
    
    
    }
    
    
    int main()
    {
        int n,m;
        cin>>n>>m;
       // graph.resize(n+1);
        for(int i=0;i<m;i++)
        {
            int start,endL;
            cin>>start>>endL;
            //graph[start].push_back(start);
            graph[start][endL]=1;
            graph[endL][start]=1;
           // graph[endL].push_back(endL);
        }
        cin>>m;
        for(int i=0;i<m;i++)
        {
            int k;
            cin>>k;
            int temp[k];
            for(int j=0;j<k;j++)
            {
               int a;
               cin>>a;
                temp[j]=a;
            }
            judge(temp,k,n);
        }
    
        return 0;
    }
     
     
  • 相关阅读:
    LeetCode K Closest Points to Origin
    LeetCode Largest Number
    LeetCode Sort List
    LeetCode Sort Colors
    LeetCode Matrix Cells in Distance Order
    spring定时任务的几种实现方式
    maven构建这么慢,怎么改变?
    序列化框架性能对比(kryo、hessian、java、protostuff)
    java的静态方法的使用
    jvm的可见性的理解
  • 原文地址:https://www.cnblogs.com/zhanghaijie/p/10323421.html
Copyright © 2011-2022 走看看