zoukankan      html  css  js  c++  java
  • 算法学习总结(1)——基本数据结构

    其实数据结构和算法真的很重要,以前一直不怎么在意,所以每次笔试面试都被鄙视。“编程就是算法和数据结构,算法和数据结构是编程的灵魂,现在感觉这句话还是有点道理的。今天翻了翻一些基本的数据结构,记了一些基本的性质,进行总结,后面还会继续总结一些常见的查找和排序算法。

    一、线性结构

    顺序存储线性表:将元素依次存储在地址连续的存储单元中,物理上相邻

    链式存储线性表:将元素按照逻辑顺序链接在依次,不要求地址连续

    栈:仅在表的一端进行插入、删除操作的线性表,“后进先出”

    队列:仅在表的一端进行插入,另一端进行删除的线性表,“先进先出”

    栈和队列有时候笔试会针对”FIFO“这些特性出问题,不过一般理解了,就比较简单。

    二、树

    2.1概念

    二叉树是每个节点最多有两个子树(“左子树”和“右子树”)的树结构。

    满二叉树:二叉树的每一层节点个数都达到最大(即深度为k,且有2^k-1个节点);

    完全二叉树:只有最下面两层节点的度数可以小于2,并且最下一层的节点都集中在左边(深度为k,有n个节点的二叉树,当且仅当其每一个节点都与深度为k的满二叉树中,序号为1至n的节点对应)。

    满二叉树是完全二叉树的特例,如下图:


    平衡二叉树:又被称为AVL树,它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树(完全二叉树是平衡二叉树),如下图


    2.2二叉树性质:

    • a.二叉树的第i层至多有2^{i-1}个结点;
    • b.深度为k的二叉树至多有2^k-1个结点;
    • c.具有n个节点的完全二叉树的深度k=log2n+1;
    • d.对任何一棵二叉树T,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1。

    2.3二叉树遍历

    二叉树遍历记住一点就行了,即遍历的顺序都是针对根节点而言的。例如先序即先访问根节点,再遍历左子树,最后遍历右子树。结合实例来讲,如下图:


    先序遍历结果:abdgcefh

    中序遍历结果:dgbaechf

    后序遍历结果:gdbehfca

    三、图

    无向完全图:任意两个顶点都有一条直接边相连接;在含有n个顶点的无向完全图中,有n(n-1)/2条边;

    有向完全图:任意两个顶点都有方向互为相反的两条弧相连接;在含有n个顶点的有向完全图中,有n(n-1)条边。

    图的深度优先遍历:类似于树的先序遍历,下图显示了深度优先搜索顶点被访问的顺序:


    图的广度优先遍历:类似于树的按层次遍历,下图显示了广度优先搜索顶点被访问的顺序:

    ps.上面两张图片来源 http://blog.csdn.net/andyelvis/article/details/1728378。 由于CSDN加了水印,有些模糊,看不清楚的话可以去图片原址去看。

  • 相关阅读:
    C# 串口操作系列(4) -- 协议篇,文本协议数据解析(转)
    c#中,确保数据接收完整的 串口处理程序
    特别好的系列GMap.net技术总结文章12篇
    lock()
    获取程序启动路径去掉后面的i个字符
    wpf简单界面
    使用.NET进行高效率互联网敏捷开发的思考和探索【一、概述】
    $.getJSON 返回值、AJAX异步调用步骤
    JQuery validate 在IE兼容模式下出现 js错误(成员找不到)的修正:
    jQuery getJSON() 能给外部变量赋值
  • 原文地址:https://www.cnblogs.com/zhanghaiyang/p/7213169.html
Copyright © 2011-2022 走看看