zoukankan      html  css  js  c++  java
  • 3月13号周练——2015 Multi-University Training Contest 9

    2015 Multi-University Training Contest 9

    A. Expression(理解原理 区间DP

    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    #include<iostream>
    #include<vector>
    #include<queue>
    #include<cmath>
    #define maxn 105
    #define mod 1000000007
    using namespace std;
    long long dp[maxn][maxn];
    long long A[maxn],C[maxn][maxn];
    char operations[maxn];
    int a[maxn],n;
    /*初始化从0到maxn的阶乘模mod*/
    void init()
    {
        int i,j;
        A[0] = 1;
        for(i = 1;i < maxn; i++)
        {
            A[i] = (A[i-1]*i)%mod;
        }
        C[0][0] = 1;
        for(i=1; i<=100; i++)
        {
            C[i][0] = 1;
            for(j=1; j<=i; j++)
                C[i][j] = (C[i-1][j-1] + C[i-1][j])%mod;
        }
    }
    void solve()
    {
        int len,l,r,k;
        for(l = 1;l <= n;l ++)
            dp[l][l] = a[l];
        for(len = 2;len <= n;len ++)
        {
            for(l = 1;l + len - 1 <= n; l ++)
            {
                long long t;
                r = l + len -1;
                for(k = l;k < r;k ++)
                {
                    if(operations[k] == '+'){
                        t = (dp[l][k]*A[r-k-1] + dp[k+1][r]*A[k-l])%mod;
                    }
                    else if(operations[k] == '-'){
                        t = (dp[l][k]*A[r-k-1] - dp[k+1][r]*A[k-l])%mod;
                    }
                    else{
                        t = (dp[l][k]* dp[k+1][r])%mod;
                    }
                    dp[l][r] = (dp[l][r] + t* C[r-l-1][k-l])%mod;
                }
            }
        }
    }
    int main()
    {
        init();
        while(cin >> n)
        {
            memset(dp, 0, sizeof(dp));
            int i,j;
            for(i = 1;i <= n;i ++){
                cin >> a[i];
            }
            for(i = 1;i < n;i ++){
                cin >> operations[i];
            }
            solve();
            cout << (dp[1][n]+mod)%mod << endl;              //此段代码借鉴的,为什么?
        }
        return 0;
    }

    小结:此题看过题解后,思路是对的,但是对取模的机制和组合数的求法不是很熟练,需要加强。

    Travelling Salesman Problem

    #include <iostream>
    #include<cstdio>
    #define maxn 105
    #define black 1
    #define white 0
    using namespace std;
    int n,m;
    long long sum,min;
    int map[maxn][maxn],color[maxn][maxn];    //color[][] = 0/1,1代表白色,0代表黑色
    void init()
    {
        int i ,j;
        bool tmp = true;
        for(i = 1;i <= n;i ++)
        {
                for(j = 1;j <= m;j ++)
                {
                        if(tmp)
                            color[i][j] = black;
                        else
                            color[i][j] = white;
                        tmp = !tmp;
                }
        }
    }
    int main()
    {
        while(scanf("%d %d",&n,&m)!=EOF)
        {
                init();
                sum = 0;
                int i,j;
                for(i = 1;i <= n;i ++)
                {
                    for(j = 1;j <= m;j ++)
                    {
                        scanf("%d",&map[i][j]);
                        sum += map[i][j];
                    }
                }
                    /*行数n为奇数*/
                    if(n%2!=0)
                    {
                        printf("%lld
    ",sum);
                        for(i = 1;i <= n;i ++)
                        {
                            if(i%2 != 0)
                            {
                                for(j = 1;i < m;i ++)
                                    printf("R");
                            }
                            else
                            {
                                    printf("D");
                                    for(j= 1;j < m;j ++)
                                            printf("L");
                            }
                        }
                    }
                    /*行数为偶数,但列数为奇数*/
                    else if(m%2 !=  0)
                    {
                            printf("%lld
    ",sum);
                            for(i = 1;i <= m;i ++)
                            {
                                    if(i%2 != 0)
                                    {
                                            for(j = 1;i < n;i ++)
                                            printf("D");
                                    }
                                    else
                                    {
                                            printf("L");
                                            for(j= 1;j < n;j ++)
                                                    printf("U");
                                    }
                            }
                    }
                    /*行列都为偶数*/
                    else
                    {
                            
                    }
            }
            return 0;
    }
  • 相关阅读:
    三种省市级联下拉列表的写法
    三种省市级联下拉列表的写法
    SQL经典试题(mysql)
    60行代码俄罗斯方块
    ibatis xml中配置信息详解
    60行代码俄罗斯方块
    xinetd
    csh and tcsh
    xinetd restart
    bash sh
  • 原文地址:https://www.cnblogs.com/zhangjialu2015/p/5272208.html
Copyright © 2011-2022 走看看